
User’s Guide for SDDS Toolkit Version 1.24

Michael Borland

Advanced Photon Source

July 3, 2003

The Self Describing Data Sets (SDDS) file protocol is the basis for a powerful and expanding
toolkit of generic programs. These programs are used for simulation postprocessing, graphics, data
preparation, program interfacing, and experimental data analysis.

This document describes Version 1.24 of the SDDS commandline toolkit. Those wishing to
write programs using SDDS should consult the Application Programmer’s Guide for SDDS Version

1.5[1]. The first section of the present document is shared with this reference.
This document does not describe SDDS-compliant EPICS applications, of which they are many.

Some of these will be covered in a separate manual.

1 Why Use Self-Describing Files?

Before answering the question posed by the title of this section, it is necessary to define what a
self-describing file is. As used here, data in self-describing files has the following attributes:

• The data is accessed by name and by class. For example, one might ask for “the column
of data called X”, or “the array of data called Y”. Self-describing data is not accessed by
position in a file; e.g., one would not ask for “the third column of data”.

• Various attributes of the data that may be necessary to using it are available. For example,
one can ask “what are the units of column X?”, “what is the data-type of array Y?”, or “how
many dimensions does array Y have?” .

The primary advantage of accessing data and its attributes by name rather than the traditional
position method is that one can then construct generic tools to manipulate data. Self-describing
data contains the information that tools need to manipulate various types of data correctly. For
example, one can plot data with a generic tool that accepts the names of the quantities to plot;
such a tool will be able to plot data of different types (e.g., integer or floating-point), and display
relevant information (e.g., units) on the plot.

Another advantage of self-describing data is that it makes the interface between programs more
robust and flexible. Since programs only look for data by name, insertion of additional data into a
file is irrelevant. Multiple programs may interface to a single program even in the face of differences
in what data each places in its output files. E.g., program A may create data in single-precision,
with columns called X, Y, and Z. Program B may create data in double-precision, with columns
called X, Y, and W. If all programs employ self-describing files, then a properly-written program
C could access X and Y from the output of either program A or B. It could also determine that
the output of program B didn’t contain data called Z, and warn the user of this.

1

The SDDS file protocol incorporates these aspects of self-describing data. It has been found
extremely valuable for storing data from simulation, experiment, and accelerator operation at
the Advanced Photon Source (APS). SDDS is made more valuable by the existence of a growing
“toolkit” of over 40 generic commandline programs that perform many varied operations using
SDDS files. Indeed, while there are more general self-describing protocols than SDDS, to the
author’s knowledge only SDDS has a powerful, generic program toolkit built around it. In the
author’s opinion, this is possible because SDDS protocol is general but not too general. The SDDS
Toolkit is used to postprocess simulation output, to analyze experimental and archival data, to
prepare data for input to other programs, to provide a bridge between separate simulation codes,
to display data graphically, to collate and section accelerator save/restore files, and much more.

While it is very flexible, SDDS is also fairly simple. Because SDDS features interchangeable
binary and ASCII formats, it is an easy matter to create an SDDS data set “by hand”, when neces-
sary. It is also easy to modify existing programs to print in SDDS protocol, and to create headers
to convert existing text data to SDDS. At the same time, data archivers, large-scale simulations,
and similar applications can store data in binary for quick access and disk economy. These and
other features contribute to the widespread use of SDDS at APS.

2 Definition of SDDS Protocol

2.1 Introduction

An SDDS file is referred to as a “data set”. Each data set consists of an ASCII header describing
the data that is stored in the file, followed by zero or more “data pages” or “data tables” (the
former term is preferred, though the latter is used in many places). The data may be in ASCII or
unformatted (i.e., “binary”). Each data page is an instance of the structure defined by the header.
That is, while the specific data may vary from page to page, the structure of the data may not.

Three types of entities may be present in each page: parameters, arrays, and columns. Each of
these may contain data of a single data type, with the choices being long and short integer, single
and double precision floating point, single character, and character string. The names, units, data
types, and so forth of these entities are defined in the header.

Parameters are scalar entities. That is, each parameter defined in the header has a single value
for each page. Each such value may be a single number or a single character string, for example.

Arrays are multidimensional entities with potentially varying numbers of elements. While there
is no restriction on the number of dimensions an array may contain, this quantity is fixed throughout
the file for each array. However, the size of the array may vary from page to page. Thus, a given
two-dimensional array might be 2x2 in one page, 3x5 in the next, etc.

Columns are vector entities. All columns in a data set are organized into a single table, called
the “tabular data section”. Thus, all columns must contain the same number of entries, that
number being the number of rows in the table. There is no restriction on how many rows the
tabular data may contain, nor on the mixing of data types in the tabular data.

It is possible to design more sophisticated data protocols than SDDS, and this has in fact
been done. However, the more flexible a protocol is, the more difficult it becomes to write generic
programs that operate on data. Experience with SDDS has shown that there is very little data that
cannot be conveniently stored in one or more SDDS files. In fact, most applications need only the
parameter and tabular data facilities. Frequently, complex data is separated into several parallel
files; the SDDS toolkit provides support for multifile operations that make this convenient.

The following is an example of a very simple SDDS file. Users who would prefer not to read
the detailed description of the protocol in the next section may profit from using this example as

2

a guide.

SDDS1

! This is a comment line. The previous line is required and identifies

! the file as SDDS.

! Define parameters:

¶meter name=Description, type=string &end

¶meter name=xTune, type=double &end

¶meter name=yTune, type=double &end

! Define columns:

&column name=s, type=double, units=m, description="longitudinal distance" &end

&column name=betax, type=double, units=m, description="horizontal beta function" &end

&column name=betay, type=double, units=m, description="vertical beta function" &end

&column name=ElementName, type=string &end

! Declare ASCII data and end the header:

&data mode=ascii &end

! First come the parameter values for this page, in the order defined:

Twiss parameters for the APS

35.215

14.296

! Second comes the tabular data section for this page, which has

! 50 rows in this example:

50

0.000000 14.461726 9.476181 _BEG_

3.030000 15.096567 10.445020 L01

3.360000 15.242380 10.667547 L02

3.860000 17.308605 9.854735 Q1

3.975000 18.254680 9.419835 L11

4.190000 20.094943 8.640450 L12

4.520000 23.100813 7.529584 L13

5.320000 21.435972 7.949178 Q2

5.410000 20.278542 8.350441 L21

5.620000 17.705808 9.332877 L22

5.920000 14.341175 10.848446 L30

6.420000 10.719036 12.405601 Q3

7.120000 7.920453 12.969811 L41
...

27.600000 14.461726 9.476181 L01

! The file may end at this point, or a new page may follow.

At this point, those who are new to SDDS may wish to skip to the Manual Pages Overview
(section 3) in order to get a feel for the capabilities of the Toolkit. The details of SDDS protocol,
the subject of the next section, are less important than what can be done with data once it is in
SDDS protocol.

2.2 Structure of the SDDS Header

The first line of a data set must be of the form “SDDSn”, where n is the integer SDDS version
number. This document describes version 1.

3

The SDDS header consists of a series of namelist-like constructs, called namelist commands.
These constructs differ from FORTRAN namelists in that the SDDS routines scan each construct,
determine which it is, and use the data appropriately. There are six namelist commands recognized
under Version 1. Each is listed below along with the data type and default values.

For each command, an example of usage is given. Several styles of entering the namelist
commands are exhibited. I suggest that the user choose a style that makes it easy to pick out
the beginning of each command. Note that while each namelist command may occupy one or more
lines, no two commands may occupy portions of the same line.

Any field value containing an ampersand must be enclosed in double quotes, as must string
values containing whitespace characters.

Another character with special meaning is the exclamation point, which introduces a comment.
An exclamation point anywhere in a line indicates that the remainder of the line is a comment and
should be ignored. A literal exclamation point is obtained with the sequence \!, or by enclosing
the exclamation point in double quotes.

The commands are briefly described in the following list, and described in detail in the following
subsections:

• description — Specifies a data set description, consisting of informal and formal text de-
scriptions of the data set.

• column — Defines an additional column for the tabular-data section of the data pages.

• parameter – Defines an additional parameter data element for the data pages.

• array — Defines an additional array data element for the data pages.

• include — Directs that header lines be read from a named file. Rarely used.

• data — Defines the data mode (ASCII or binary) along with layout parameters, and is always
the last command in the header.

The column, parameter, and array commands have a name field that is used to identify the data
being defined. Each type of data has a separate “name-space”, so that one may, for example, use the
same name for a column and a parameter in the same file. This is discouraged, however, because
it may produce unexpected results with some programs. Names may contain any alphanumeric
character, as well as any of the following: @ : # + - % . $ & / . The first letter of a name
may not be a digit.

2.2.1 Data Set Description

&description

STRING text = NULL

STRING contents = NULL

&end

This optional command describes the data set in terms of two strings. The first, text, is an
informal description that is intended principly for human consumption. The second, contents, is
intended to formally specify the type of data stored in a data set. Most frequently, the contents

field is used to record the name of the program that created or most recently modified the file.
Example:

4

&description

text = "Twiss parameters for APS lattice",

contents = "Twiss parameters"

&end

Note: In many cases it is best to use a string parameter for descriptive text instead of the
description command. The reason is that the Toolkit programs will allow manipulation of a
string parameter.

2.2.2 Tabular-Data Column Definition

&column

STRING name = NULL

STRING symbol = NULL

STRING units = NULL

STRING description = NULL

STRING format_string = NULL

STRING type = NULL

long field_length = 0

&end

This optional command defines a column that will appear in the tabular data section of each
data page. The name field must be supplied, as must the type field. The type must be one of
short, long, float, double, character, or string, indicating the corresponding C data types.
The string type refers to a NULL-terminated character string.

The optional symbol field allows specification of a symbol to represent the column; it may
contain escape sequences, for example, to produce Greek or mathematical characters. The optional
units field allows specification of the units of the column. The optional description field provides
for an informal description of the column, that may be used as a plot label, for example. The
optional format string field allows specification of the printf format string to be used to print
the data (e.g., for ASCII in SDDS or other formats).

For ASCII data, the optional field length field specifies the number of characters occupied by
the data for the column. If zero, the data is assumed to be bounded by whitespace characters. If
negative, the absolute value is taken as the field length, but leading and trailing whitespace charac-
ters will be deleted from string data. This feature permits reading fixed-field-length FORTRAN
output without modification of the data to include separators.

The order in which successive column commands appear is the order in which the columns are
assumed to come in each row of the tabular data.

Example (using sddsplot conventions for Greek and subscript operations):

&column name=element, type=string, description="element name" &end

&column

name=z, symbol=z, units=m, type=double,

description="Longitudinal Position" &end

&column

name=alphax, symbol="garbxn", units=m,

type=double, description="Horizontal Alpha Function" &end

&column

name=betax, symbol="gbrbxn", units=m,

5

type=double, description="Horizontal Beta Function" &end

&column

name=etax, symbol="gcrbxn", units=m,

type=double, description="Horizontal Dispersion" &end

.

.

.

2.2.3 Parameter Definition

¶meter

STRING name = NULL

STRING symbol = NULL

STRING units = NULL

STRING description = NULL

STRING format_string = NULL

STRING type = NULL

STRING fixed_value = NULL

&end

This optional command defines a parameter that will appear along with the tabular data section
of each data page. The name field must be supplied, as must the type field. The type must be one
of short, long, float, double, character, or string, indicating the corresponding C data types.
The string type refers to a NULL-terminated character string.

The optional symbol field allows specification of a symbol to represent the parameter; it may
contain escape sequences, for example, to produce Greek or mathematical characters. The optional
units field allows specification of the units of the parameter. The optional description field
provides for an informal description of the parameter. The optional format field allows specification
of the printf format string to be used to print the data (e.g., for ASCII in SDDS or other formats).

The optional fixed value field allows specification of a constant value for a given parameter.
This value will not change from data page to data page, and is not specified along with non-fixed
parameters or tabular data. This feature is for convenience only; the parameter thus defined is
treated like any other.

The order in which successive parameter commands appear is the order in which the parameters
are assumed to come in the data. For ASCII data, each parameter that does not have a fixed value

will occupy a separate line in the input file ahead of the tabular data.
Example:

¶meter name=NUx, symbol="gnrbxn",

description="Horizontal Betatron Tune", type=double &end

¶meter name=NUy, symbol="gnrbyn",

description="Vertical Betatron Tune", type=double &end

¶meter name=L, symbol=L, description="Ring Circumference",

type=double, fixed_value=30.6667 &end

.

.

.

6

2.2.4 Array Data Definition

&array

STRING name = NULL

STRING symbol = NULL

STRING units = NULL

STRING description = NULL

STRING format_string = NULL

STRING type = NULL

STRING group_name = NULL

long field_length = 0

long dimensions = 1

&end

This optional command defines an array that will appear along with the tabular data section
of each data page. The name field must be supplied, as must the type field. The type must be one
of short, long, float, double, character, or string, indicating the corresponding C data types.
The string type refers to a NULL-terminated character string.

The optional symbol field allows specification of a symbol to represent the array; it may contain
escape sequences, for example, to produce Greek or mathematical characters. The optional units
field allows specification of the units of the array. The optional description field provides for
an informal description of the array. The optional format string field allows specification of the
printf format string to be used to print the data (e.g., for ASCII in SDDS or other formats). The
optional group name field allows specification of a string giving the name of the array group to
which the array belongs; such strings may be defined by the user to indicate that different arrays
are related (e.g., have the same dimensions, or parallel elements). The optional dimensions field
gives the number of dimensions in the array.

The order in which successive array commands appear is the order in which the arrays are
assumed to come in the data. For ASCII data, each array will occupy at least one line in the input
file ahead of the tabular data; data for different arrays may not occupy portions of the same line.
This is discussed in more detail below.

Example:

&array name=Rx, units=R-standard-units, type=double, dimensions=2,

description="Horizontal transport matrix in standard units",

group_name="2x2 transport matrices" &end

&array name=R-standard-units, type=string, dimensions=2,

description="Standard units of 2x2 transport matrices",

group_name="2x2 transport matrices" &end

&array name=P, units=P-standard-units, type=double, dimensions=1,

description="Particle coordinate vector in standard units" &end

&array name=P-standard-units, type=string, dimensions=1,

description="Standard units of particle coordinate vectors" &end

.

.

.

2.2.5 Header File Include Specification

&include

7

STRING filename = NULL

&end

This optional command directs that SDDS header lines be read from the file named by the
filename field. These commands may be nested.

Example of a minimal header:

SDDS1

&include filename="SDDS.twiss-parameter-header" &end

! data follows:

.

.

.

2.2.6 Data Mode and Arrangement Defintion

&data

STRING mode = "binary"

long lines_per_row = 1

long no_row_counts = 0

long additional_header_lines = 0

&end

This command is optional unless parameter commands without fixed value fields, array

commands, or column commands have been given.
The mode field is required, and may have one of the values “ascii” or “binary”. If binary mode

is specified, the other entries of the command are irrelevant and are ignored. In ASCII mode, these
entries are optional.

In ASCII mode, each row of the tabular data occupies lines per row rows in the file. If
lines per row is zero, however, the data is assumed to be in “stream” format, which means that
line breaks are irrelevant. Each line is processed until it is consumed, at which point the next line
is read and processed.

Normally, each data page includes an integer specifying the number of rows in the tabular data
section. This allows for preallocation of arrays for data storage, and obviates the need for an end-
of-page indicator. However, if no row counts is set to a non-zero value, the number of rows will
be determined by looking for the occurence of an empty line. A comment line does not qualify as
an empty line in this sense.

If additional header lines is set to a non-zero value, it gives the number of non-SDDS data
lines that follow the data command. Such lines are treated as comments.

2.3 Structure of SDDS ASCII Data Pages

Since the user may wish to create SDDS data sets without using the SDDS function library, a more
detailed description of the structure of ASCII data pages is provided. Comment lines (beginning
with an exclamation point) may be placed anywhere within a data page. Since they essentially do
not exist as far as the SDDS routines are concern, I omit mention of them in what follows.

The first SDDS data page begins immediately following the data command and the optional ad-
ditional header lines, the number of which is specified by the additional_header_lines parameter
of the data command.

8

If parameters have been defined, then the next Np − Nfp lines each contains the value of a single
parameter, where Np is the total number of parameters and Nfp is the number of parameters for
which the fixed_value field was specified. These will be assigned to the parameters in the order
that the parameter commands occur in the header. Multi-token string parameters need not be
enclosed in quotation marks.

If arrays have been defined, then the data for these arrays comes next. There must be at
least one ASCII line for each array. This line must contain a list of whitespace-separated integer
values giving the size of the array in each dimension. The number of values must be that given
by the dimensions field of the array definition. If the number of elements in the array (given by
the product of these integers) is nonzero, then additional ASCII lines are read until the required
number of elements has been scanned. It is an error for a blank line or end-of-file to appear before
the required elements have been scanned.

If tabular-data columns have been defined, the data for these elements follows. If the
no_row_counts parameter of the data command is zero, the first line of this section is expected
to contain an integer giving the number of rows in the upcoming data page. If no_row_counts is
non-zero, no such line is expected. The remainder of the tabular data section has various forms
depending on the parameters of the data command, as discussed above. The default format is that
each line contains the whitespace-separated values for a single row of the tabular data.

For column and array data, string data containing whitespace characters must be enclosed in
double-quotes. For column, array, and parameter data, nonprintable character data should be
“escaped” using C-style octal sequences.

More than one data page may appear in the data set. Subsequent data pages have the same
structure as just described. If no_row_counts=1 is given in the data command, then a blank line
is taken to end each data set. An invalid line (e.g., too few rows or invalid data) is treated as an
error, and the rest of the file is ignored.

2.4 Structure of SDDS Binary Data Pages

Since the user may wish to read or write SDDS data sets without using the SDDS function library,
a more detailed description of the structure of the data pages is provided.

The first SDDS data page begins immediately following the data command and the optional ad-
ditional header lines, the number of which is specified by the additional_header_lines parameter
of the data command.

All binary data is stored in the machine representation, except for strings. Strings are stored in
a variable-record format that consists of a long signed integers followed by a sequence of characters.
The number of characters is equal to the value in the signed integer. Note that the SDDS library
has features that allow recognition and interpretation of big- and little-endian data representations,
which are not described here.

The first element in the data page is the row count, which is a long signed integer. This exists
even in files that do not contain any columns.

If parameters have been defined, then their values follow in the order that the parameter

definitions appear in the header. Note that if a parameter is define as “fixed-value” in the parameter
definition, then its value will not appear.

If arrays have been defined, then they follow next, in the order that the array definitions appear
in the header. For each array, a series of long signed integers is first given, one for each dimension
of the array. For example, a two-dimensional array would have two integers, specifying the size of
the array in the first and second dimension. If the two integers are, say, n and m in that order, then
the declaration of the array in a C program would be, for example, a[n][m]. Elements of the array

9

are put in the file in C storage order, which means that the outermost index varies fastest as the
data is accessed in storage order.

If tabular-data columns have been defined, then the table data follows. Data is stored as rows,
so that data for columns is intermixed. The order of the columns is the same as the order of the
column definitions in the header.

References

[1] M. Borland and R. Soliday, “Application Programmer’s Guide for SDDS Version 1.5”, APS LS
Note.

[2] M. Borland, “User’s Manual for elegant”, APS Light Source Note, LS-287, September 2001.

[3] M. Borland, “A Self-Describing File Protocol for Simulation Integration and Shared Postproces-
sors”, to appear in Proceedings of the 1995 Particle Accelerator Conference, May 1995, Dallas.

[4] M. Borland, “A High-Brightness Thermionic Microwave Gun”, Stanford Ph.D. Thesis, 1991,
Appendix A.

[5] L. Emery, “Commissioning Software Tools at the Advanced Photon Source”, to appear in
Proceedings of the 1995 Particle Accelerator Conference, May 1995, Dallas.

[6] L. Emery, “Beam Simulation and Radiation Dose Calculation at the Advanced Photon Source
with shower, an EGS4 Interface”, to appear in Proceedings of the 1995 Particle Accelerator

Conference, May 1995, Dallas.

[7] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, Dover Publica-
tions, New York, 1965.

[8] S. Reiche, NIM A 429 (1999) 242.

10

3 Manual Pages Overview

The intention is of this section is to provide a means by which the reader can select programs that
might suit a given need. For each program, a brief (and usually incomplete) description is given,
along with example applications. The example applications provided for each tool are drawn from
experience at APS; it is hoped that most will make sense to most readers.

This section is followed by manual pages that give detailed descriptions of each program. Many
of the programs have a large number of switches, most of which are optional. In order to help
the new user, actual commandline examples are provided for simple use of each program. After
understanding these, the user is in a good position to explore the additional capabilities provided
by the options.

Note that many of the Toolkit programs process tabular data only (i.e., columns). To use these
programs with parameter data, one can use sddscollapse to convert parameter data into tabular
data. Using pipes will make this more convenient.

Support for SDDS array elements is presently rather sparse in the Toolkit. This reflects the
fact that almost all data can be conveniently stored using parameter and column elements. Hence,
work has concentrated on providing tools that manipulate such data. Future versions of the Toolkit
will provide more array support.

Most of the Toolkit programs process data pages sequentially. That is, in many cases the
requested processing is performed on each successive page of the input file and delivered to successive
pages of the output file.

3.1 SDDS Toolkit Programs by Category

3.1.1 Mathematical Operations Tools

• sddsbaseline (4.9) — Remove baselines from column data. Example application: determin-
ing the noise level in a video signal and subtracting it from the signal.

• sddschanges (4.12) — Analyzes changes in column data from page to page in a file, relative
to a reference file or the first page. Example application: finding changes in a waveform that
is acquired repeatedly, where successive waveforms are on successive pages.

• sddscliptails (4.14) — Remove tails from column data, where a tail is dubious data on
either side of a peak. Example application: removing halo or noise tails from video images of
beam spots.

• sddsderiv (4.23) — Does numerical differentiation of multiple data columns versus a single
column, with optional error propogation.

• sddsinteg (4.38) — Does numerical integration of multiple data columns versus a single
column, with optional error propogation. Example application: finding the field integral an
accelerator magnet from a longitudinal field scan.

• sddsinterp (4.39) — Does interpolation of multiple data columns as a function of a single
column. Example application: finding the required current to obtain a desired excitation in
a magnet, or interpolating a curve at positions given in a second file.

• sddsnormalize (4.46) — Normalizes data in multiple columns using various types of normal-
ization factors, determined from the data.

11

• sddspeakfind (4.48) — Finds values of columns at locations of peaks in a single column.
Example application: finding the position and height of peaks in a power spectrum obtained
from a FFT.

• sddsprocess (4.52) — Probably the most-used toolkit program, excepting sddsplot. Allows
creating new parameters and columns with user-specified equations; filtering and matching
operations; printing, editing, scanning, and subprocess operations; statistical and waveform
analysis of column data to produce new parameters; and much more.

• sddssmooth (4.63) — Smooths columns of data using multipass nearest-neighbor averaging.
Example application: reducing noise in a frequency spectrum prior to finding peaks.

• sddszerofind (4.70) — Finds values of columns at locations of interpolated zeroes in a
single column. Example application: finding zeros of a tabulated function that isn’t known
analytically.

3.1.2 Statistics Tools

• sddscorrelate (4.22) — Computes correlation coefficients and correlation significance be-
tween column data. Example application: finding correlations among time series data col-
lected from process variables, and evaluating their signficance to find possible cause-and-effect
relationships.

• sddsdistest (4.26) — Performs statistical tests on data to determine whether the data is
drawn from any of various distributions. Example application: determining if a component
failure rate matches a Poisson distribution.

• sddsenvelope (4.28) — Analyzes column data across pages to find minima, maxima, averages,
standard-deviations, etc., on a row-by-row basis. Example application: finding the envelope
and average of a set of waveforms.

• sddseventhist (4.29) — Analyzes labeled events in a dataset to provide histograms of the
occurences of each type of event. Can also histogram the overlap off all types of events with
a single type of event. Example application: correlating the occurence times of alarm signals
to determine which alarms usually occur together.

• sddshist (4.36) — Does histograms of column data. Example application: finding the distri-
bution of a readback that is sampled many times, or of particle coordinates from an accelerator
tracking simulation.

• sddshist2d (4.37) — Does two-dimensional histograms of column data. Example applica-
tions: finding the two-dimensional distribution of a pair of readbacks that are sampled many
times, or of two particle coordinates (e.g., x and y position) from an accelerator tracking
simulation.

• sddsmultihist (4.42) — Does histograms of multiple columns of data. Example application:
finding the distribution of a set of similar readbacks that are sampled many times.

• sddsoutlier (4.47) — Eliminates statistical outliers from data. Example application:
eliminating bad or nonrepresentative data points prior to searching for correlations with
sddscorrelate, or computing statistics with sddsprocess.

12

• sddsprocess (4.52) — Probably the most-used toolkit program, excepting sddsplot. Allows
creating new parameters and columns with user-specified equations; filtering and matching
operations; printing, editing, scanning, and subprocess operations; statistical and waveform
analysis of column data to produce new parameters; and much more.

• sddsrowstats (4.56) — Computes row-by-row statistics across multiple columns of data,
creating new columns to contain the statistics. Example application: finding the mean value
of a set of readout values from time-series data collection, where each readout is in a separate
column.

• sddsrunstats (4.57) — Computes running or blocked statistics of multiple columns. Example
applications: smoothing noisy data; finding running averages and error bars for time-series
data.

• sddsshiftcor (4.61) — Computes correlation coefficients between column data as a function
of shift position of a reference column. Example application: finding correlations among time
series data collected from process variables, including the possibility of time-lags between the
process variables due to physical or data collection effects.

3.1.3 Digital Signal Processing Tools

• sddsconvolve (4.21) — Does FFT convolution, deconvolution, and correlation. Example
application: computing the ideal impulse response of a system after you’ve measured the
response to a pulse.

• sddsdigfilter (4.25) — Performs time-domain digital filtering of column data. Example
applications: low pass, high pass, band pass, or notch filtering of data to eliminate unwanted
frequencies.

• sddsfdfilter (4.32) — Performs frequency-domain filtering of column data. Example ap-
plication: applying a filter that is specified as a table of attenuation and phase as a function
of frequency.

• sddsfft (4.33) — Does Fast Fourier Transforms of column data. Example application: find-
ing signficant frequency components in time-varying data, or finding the integer tune of an
accelerator from a difference orbit.

• sddsnaff (4.45) — Does Numerical Analysis of Fundamental Frequencies, a more accurate
method of determining principle frequencies in signals than the FFT.

3.1.4 Data Fitting Tools

• sddsexpfit (4.31) — Does an exponential fit to column data. Example application: finding
the exponential lifetime of a beam in a storage ring, or the half-life a radioactive sample.

• sddsgenericfit (4.34) — Does generic fits to column data. Example application: fitting the
sum of two gaussians.

• sddsgfit (4.35) — Does gaussian fits to column data. Example application: finding the
width of a resonance, or the rms size of a beam profile.

13

• sddsmpfit (4.41) — Does polynomial fits to multiple columns data, including error analysis.
Will do fits to specified orders, fits of specified symmetry, and adaptive fitting. Use sddspfit
as a simpler and somewhat more capable alternative for fitting a single column of data.

• sddspfit (4.49) — Does polynomial fits to column data, including error analysis. Will do
fits to specified orders, fits of specified symmetry, and adaptive fitting.

3.1.5 Data Manipulation Tools

• sddsbreak (4.10) — Breaks data pages into new, separate pages based on changes in column
data and other criterion. Example applications: reorganizing a file to have a limited number
of rows in each page, or to have a new page started when a gap is seen in the data.

• sddscast (4.11) — change the data type of the elements in an SDDS file.

• sddscollapse (4.15) — Collapses a data set into a single data page by deleting the tabular
data and turning the parameters into columns. Example application: abstraction of summary
properties of data set following analysis with sddsprocess.

• sddscollect (4.16) — Reorganizes tabular data from the input file to bring data from sev-
eral groups of similarly named columns together into a single column per group. Example
application: collecting several statistical analyses of many columns into a single column per
analysis type.

• sddscombine (4.17) — Combines any number of data sets into a single data set by adding
data from each successive data set to a newly-created data set. Example application: bringing
together comparable but distinct data for analysis with sddsprocess. Using sddsprocess,
sddscombine, and sddscollapse in sequence repeatedly is a powerful way to analyze and
collate large amounts of data.

• sddsconvert (4.20) — Allows conversion of a data set between binary and ASCII, with
optional deletion and renaming of columns, arrays, and parameters . Example application:
conversion to binary of an ASCII data set created by a simple program, or by a text editor.
N.B.: it is not recommended to use sddsconvert to convert a binary SDDS file to ASCII,
then strip the header off and read the ASCII file. This completely bypasses the self-describing
aspects of the SDDS file and is not robust. If the program that creates the SDDS file is
changed so that the columns are created in a different order, the program that reads the
ASCII file will produce unexpected results. Use sdds2plaindata (4.6), sddsprintout (4.51),
or sdds2stream (4.8) for conversion to non-self-describing files. In this way, you can assure
the order of the data is fixed.

• sddsderef (4.24) — Allows dereferencing (i.e., de-indexing) of array and column data. Ex-
ample application: converting a column of integer indexes into a column of equivalent text
messages, where the text messages are stored once each in an array in the input file (for
space-savings).

• sddsendian (4.27) — Converts from little-endian to big-endian and vice-versa. Example
application: converting binary data from the native format to a format used on another type
of computer prior to transferring the data to the other computer.

• sddsexpand (4.30) — Expands a data set into one page for each row, with column data
promoted to parameter data. Essentially the inverse of sddscollapse (4.15).

14

• sddsregroup (4.55) — Swaps the row indexing and page indexing of data in an SDDS file.
That is, the ith row of the jth data page in the input file becomes the jth row of the ith
data page of the output file. Example application: viewing the long-term evolution of a
repeatedly-sampled waveform at each point in the waveform.

• sddstranspose (4.67) — Transposes the tabular data in the input file, so that the output file
contains one column for each row in the input. Example usage: tranpose an orbit response
matrix as part of preparing to use it for feedback.

• sddsmakedataset (4.40) — writes the input data into a file or pipe in SDDS format. It can
be used to make add SDDS file consisting of a small amount of data from the script. It is
more convenient than sdds save.

• sddsmatrixmult (4.43) — Multiplies the tabular data in the two input files to produce a
file containing a matrix of the product. Example usage: Multiply a vector of errors with a
correction matrix to obtain a vector of corrections to apply in a step-by-step feedback system.

• sddsmatrixop (4.44) — performs general matrix operations. The matrices and operations
are specified on the command line and the operations will proceed in a rpn-like fashion.

• sddsselect (4.59) — Copies rows from one file based on the presence or absence of matching
data in another file. Example application: finding all of the rows from one file that do not
appear in a second file.

• sddssort (4.64) — Sorts the tabular data section of a data set by the values in named
columns. Optionally eliminates duplicate rows.

• sddssplit (4.65) — Places each page of a file in a separate, new file. Example application:
getting selected pages of a file into separate, single-page files for use with a program that only
recognizes the first page.

• sddsxref (4.69) — Creates a new data set by adding selected rows from one data set to
another data set. Example application: cross-referencing the turn-by-turn coordinates of
particles in a tracking simulation with the initial coordinates using a particle ID number.

3.1.6 Graphics Tools

• sddscontour (4.19) — Makes contour and color-map plots from an SDDS data set column, or
from a rpn expression of the values in the columns of a data set. Supports FFT interpolation
and filtering. Example application: displaying data from a two-dimensional magnetic field
scan.

• sddsplot (4.50) — A highly flexible, device-independent graphics program, equally capable
of “quick-and-dirty” or publication quality graphics. Example application: making an X-
windows movie of several columns of data that change from page to page in a file.

3.1.7 Miscellaneous Tools

• elegant2genesis (4.2) — Processes particle output from the particle tracking code
elegant[2] and makes a file suitable for use as the BEAMFILE with the FEL code
GENESIS[8].

15

• sddssampledist (4.58) — Draws samples from one or more probability distributions. Suitable
for making input particle distributions for tracking codes, for example, using user-defined
probability distributions.

• sddssequence (4.60) — Creates an SDDS data set of arithmetic sequences. Example applica-
tion: generating values for an independent variable, whose values can be used by sddsprocess

to produce a mathematical function.

• sddscongen (4.18) — Creates an SDDS data set by evaluating an rpn expression over a
defined 2 dimensional grid. Example application: generating values of a function of two
variables on a grid for plotting with sddscontour.

• sddstimeconvert (4.66) — Converts time data between seconds-since-epoch and calendar
breakdown formats. Example application: finding the year, month, and day corresponding
to a system time value.

3.1.8 File Protocol Conversion Tools

• csv2sdds (4.1) — Converts CSV (Comma-Separated-Values) data to SDDS.

• citi2sdds (??) — Converts Hewlett-Packard CITI files to SDDS.

• hpif2sdds (??) — Converts Hewlett-Packard HP54542 scope internal format to SDDS.

• hpwf2sdds (??) — Converts Hewlett-Packard HP54542 scope text format to SDDS.

• hdf2sdds (4.3) — Converts Hierarchical Data Format (HDF) to SDDS.

• lba2sdds (??) — Converts Spiricon Laser Beam Analyzer files to SDDS.

• plaindata2sdds (4.4) — Converts plain data file with simple formatting to SDDS.

• sdds2math (4.5) — Converts SDDS data to a format accepted by Mathematica.

• sdds2mpl (5.3) — Extracts data columns or parameters from an SDDS data set and creates
mpl data files[4].

• sdds2plaindata (4.6) — Converts SDDS data to a plain data file with simple formatting.
This is one of the recommended ways to convert SDDS data to plain ASCII or binary data
for input to non-compliant programs. The advantage of using sdds2plaindata is that you
can guarantee that the data is emitted in a fixed order.

• sdds2spreadsheet (4.7) — Converts SDDS data to a format accepted by the Excel and
Wingz spreadsheets. Obsolete. Use sddsprintout (4.51) instead.

• TFS2sdds (??) — Converts MAD/LEP TFS files to SDDS.

3.1.9 Text-based Data-review Tools

• sdds2stream (4.8) — Takes column or parameter data from a list of SDDS data sets and
delivers it to the standard output as a stream of values. Example application: getting data
into a shell variable for use in a script. sdds2stream may be used to convert SDDS data to
plain ASCII text.

16

• sddsprintout (4.51) — Makes customized printouts from column, parameter, and array
data in an SDDS data set. Also makes spreadsheet-compatible data and plain ASCII text.
Example application: making a nicely-formatted printout of data that needs to be reviewed
manually.

• sddsquery (4.54) — Prints a summary of the SDDS header for a data set. Also prints bare
lists of names of defined entities, suitable to use with shell scripts that need to detect the
existence of entities in the data set.

3.2 Toolkit Program Usage Conventions

In order to make the multitude of Toolkit programs easier to use, the developers have attempted
to use consistent commandline argument styles. The Toolkit programs all require at least one
commandline argument. Therefore, if a program is executed without commandline arguments, it is
assumed that the user is asking for help. In this case, a help message is printed that shows syntax
and (usually) describes the meaning of the switches. In general, program usage is of the following
form:

programName fileNames switches.
Probably the simplest example would be

sddsquery fileName,
which would invoke sddsquery to describe the contents of an SDDS file. A slightly more compli-
cated example would be

sddsquery fileName -columnList,
which invokes sddsquery to list just names of columns in a file.

Programs assume that any commandline argument beginning with a minus sign (’-’) is an option;
all others are assumed to be filenames. Note that case is ignored in commandline switches. The
specific meaning of a filename is dictated by its order on the commandline. For example, if two
filenames are given, the first would commonly be an input file while the second would commonly
be an output file.

In some cases, a command with a single filename implies replacement of the existing file. For
example,

sddsconvert fileName -binary

would replace the named file with a binary version of the same data. This command is completely
equivalent to

sddsconvert -binary fileName

That is, unlike many UNIX commands, the position of filenames relative to options is irrelevant.
One might also wish to make a new file, rather than replacing the existing file. This could be

done by
sddsconvert -binary fileName fileName2

Note that while the option may appear anywhere on the commandline, the order of the filenames
is crucial to telling the program what to do.

In following manual pages and in the program-generated help text, program usage is described
using the following conventions:

• The first token on the commandline is the name of the program.

• Items in square-brackets ([]) are optional. Items not in square brackets are required.

• Items in curly-brackets ({}) represent a list of choices. The choices are separated by a |

character, as in

17

{ choice1 | choice2 | choice3 }

• Items in italics are descriptions of arguments or data that must be supplied by the user.
These items are not typed literally as shown.

• Items in normal print are typed as shown, with optional abbreviation. These are usually
switch keywords or qualifiers. Any unique abbreviation is acceptable.

In addition to using files, most toolkit programs also take input from pipes, which obviates the
need for temporary files in many cases. For those programs that support pipes, one can employ
the -pipe option. This option provides a good example of what options look like. For example,
one could do the following to test binary-ascii conversion:

sddsconvert -binary -pipe=out fileName | sddsconvert -ascii -pipe=in fileName1

The -pipe=out option to sddsconvert tells it to deliver its output to a pipe; it still expects a
filename for input. Similarly, the -pipe=in option to sddsquery tells it to accept input from a
pipe.

The -pipe switch may be given in one of five forms: -pipe, -pipe=input,output,
-pipe=output,input, -pipe=input, -pipe=output . The first three forms are equivalent. In
a usage message, these forms would be summarized as -pipe[=input][,output]. One could also
use abbreviations like -pipe=i, -pipe=i,o, etc. For convenience in the manual, the data stream
from or to a pipe will often be referred to by the name of the file for which it substitutes. Note
that you may not deliver more than one file on the same pipe.

3.3 Data for Examples

In order to make examples simpler to present, it helps to have hypothetical data files to refer to.
I will assume the existence of several data files that I hope will be familiar to many readers. An
ASCII version of each file is provided in the SDDS distribution package. This gives new users some
data to “play with” in getting familiar with SDDS. These files are also used in several demonstration
scripts provided in the package.

For each file, I’ve listed the names of the columns and parameters, and described each. I’ve given
the data types in detail, even though only the distinction between numerical and nonnumerical data
is relevant, just to emphasize that data types can be freely mixed. I’ve tried to include as little
data as is necessary to make useful demonstrations, without simplifying so much as to be trivial.

3.3.1 Twiss Parameters

The example of Twiss parameters for an accelerator is a familiar one. Throughout these pages, it is
assumed that two files, �APS0.twi and APS.twi, exist containing the following data (a simplification
of the Twiss output from the accelerator simulation code elegant):

• Parameters:

– nux, nuy – Double-precision values of the x and y tunes.

– alphac — Double-precision values of the momentum compaction factor.

• Columns:

– s – A double precision column of element positions. For simplicity, it is assumed to
increase monotonically through the file.

18

– ElementName – A string column of element names.

– ElementType – A string column of element type identifiers.

– betax, betay — Double-precision columns of the beta functions for the horizontal and
vertical planes, respectively.

– psix, psiy — Double-precision columns of the betatron phase advance.

– etax, etay — Double-precision columns of the dispersion functions.

To make it more interesting, APS0.twi is a single-page file containing the APS design lattice, while
APS.twi is a multi-page file with each page corresponding to a different configuration.

In passing, it is appropriate to mention the style of the names used. It has been found helpful
to use capitalization at word boundaries to make long names more readable. (In some cases, like
betax, a certain case is used because it is significant.) When doing so will not create confusion,
we also tend to capitalize the first letter of a name, which helps the name to stand out on the
command line. Abiding by these conventions tends to result in readable names being created by
Toolkit programs that have automatic name generation. Underscores in names are avoided because
they increase the length of a name while adding less readability than capitalization.

3.3.2 Data Logging Over Time

One of the most common applications of SDDS for APS commissioning and operation is log-
ging of measured data values at intervals. A set of generic EPICS monitoring programs
sddsmonitor, sddsvmonitor (vector monitoring), and sddswmonitor (waveform monitoring) are
used for this. One example is the vacuum pressure in the APS ring, which is logged continuously by
sddsvmonitor; this data consists of readings from ion gauges around the ring. Another example is
logging of beam-position-monitor readouts in the Positron Accumulator Ring (PAR) and its input
and output beam transport lines using the program sddsmonitor.

For use in examples, I’ll assume the existence of two files called SR.vac and par.bpm. These
are simplified from actual files collected with the programs just mentioned.

SR.vac is a file containing an arbitrary series of data pages, each consisting of a snapshot of
the vacuum gauge readings around the ring. There are 40 such readings, one for each sector of the
accelerator. Typically, one set of readings is taken every 15 minutes.

• Parameters:

– TimeStamp — A string parameter containing the time at which the snapshot was taken.

– TimeOfDay — A double-precision parameter containing the time of day in hours since
midnight.

• Columns:

– Index — A long-integer column containing the row index.

– SectorName — A string column containing the name of the sector each row corresponds
to.

– Pressure — A double-precision column containing the pressure readout from the gauges
at the time given by TimeStamp.

par.bpm is a file containing a single page of data with any arbitrary number of rows. The PAR
has 16 beam-position-monitors (BPMs), each providing a horizontal (x) and vertical (y) readout.

19

In addition, the beam transport line downstream of PAR (known as the PTB line), contains five
BPMs for x and five for y. The data included in the distribution contains only the x values, since
these are more interesting:

• Parameters:

– TimeStamp — A string parameter giving the starting time of the data collection.

• Columns:

– Time — A double-precision column giving the elapsed number of seconds since monitor-
ing begain. The values are approximately equispaced.

– TimeOfDay — A double-precision column giving the time of day in hours since midnight.

– PquadrantPnumberx — 16 single-precision readouts of the horizontal beam orbit just
prior to beam extraction. quadrant ranges from 1 to 4, as does number.

– PquadrantPnumbery — 16 single-precision readouts of the vertical beam orbit just prior
to beam extraction. quadrant ranges from 1 to 4, as does number.

– PTB:PHnumberx — four single-precision readouts of the horizontal beam trajectory as
the beam passes through the PTB transfer line. number ranges from 2 to 5.

20

4 Manual Pages

Manual pages are written by the program author unless otherwise noted.

21

4.1 csv2sdds

• description: Converts Comma-Separated-Values (CSV) data and similar data to SDDS.
CSV data is commonly used by spreadsheet programs.

• example:

csv2sdds data.csv -columnData=name=x,type=float,units=m

-columnData=name=Name,type=string data.sdds

• synopsis:

csv2sdds [CSVfile] [SDDSfile] [-pipe[=in][,out]] [-asciiOutput] [-spanLines]

[-maxRows=integer] [-delimiters=start=character,end=character]

[-separator=character] -schFile=SCHfilename |

[-columnData=name=string,type=string[,units=string] ...]

• files: CSVfile is a comma-separated-values file. Such a file consists of M rows each containing
N items of data, forming N columns. The items on each row are separated by commas (or
by a specified separator). The items may also be delimited by double quotation marks (or by
specified delimiters).

SDDSfile is the SDDS output that is created.

The optional SCHfilename is a way of specifying the column headers. The file is expected to
contain a series of lines of the form tag=valueList, where valueList is a comma-separated list
of one or more items. Lines not matching this format are ignored. The tag may be one of the
following:

– Filetype: optional. If given, must have valueList of Delimited.

– Delimiter: optional. If given, the first character of valueList is used for the start and
end delimiters.

– Separator: optional. If given, the first character of valueList is used for the separator.

– CharSet: optional. If given, must have valueList of ascii.

– FieldN, where N is an integer: one or more required. The integers N must be con-
secutive. The first item in valueList is taken as the column name. The second item is
interpreted as the data type. At present, only the Float data type is actually interpreted
as anything other than character data. All others are treated as character string types.
If needed, sddsprocess may be used to process the resulting string columns to produce
other data types.

• switches:

– -pipe[=in][,out] — The standard SDDS Toolkit pipe option.

– -asciiOutput — Specifies ASCII output.

– -delimiters=start=character,end=character — Specifies start and end delimiters
for data. The default is to use a double-quotation mark for both.

– -separator=character — Specifies separator to use. The default is a comma.

22

– -schFile=filename — Specifies the name of a SCH file specifying the format of the
CSV file. I don’t know what SCH stands for, but apparently some PC programs generate
such files.

– -columnData=name=string,type=string[,units=string] — Specifies the name and
data type of a column of data in the CSV file. One of these options should be given for
each column in the input file, in the same order as the columns appear in that file.

– -spanLines — Specifies that the program should ignore line breaks in parsing the input
data.

– maxRows=integer — The maximum number of rows expected. This allows optimization
of the program, but isn’t essential.

• see also:

– sdds2stream (4.8)

– sddsprocess (4.52)

– plaindata2sdds (4.4)

• author: M. Borland, ANL/APS.

23

elegant2genesis

4.2 elegant2genesis

• description: elegant2genesis analyzes particle output data from elegant and prepares
a “beamfile” for input to GENESIS[8], a 3-D time-dependent FEL code by S. Reiche. The
beamfile is contains slice analysis of the particle data, and may be useful in other applications
as well.

• synopsis:

elegant2genesis inputfile outputfile [-pipe=[in][,out]] [-textOutput]

[-totalCharge=coulombs | -chargeParameter=name] [-wavelength=meters |

-slices=integer] [-steer]

[-removePTails=deltaLimit=value[,fit][,beamOutput=filename]]

• files:

– inputfile — A particle output file from elegant or any other program that uses the same
column names and units.

– outputfile — Contains the slice analysis, suitable for use with SDDS-compliant GENESIS.

• switches:

– -pipe[in][,out] — The standard SDDS toolkit pipe option.

– -textOutput — Requests text output instead of SDDS output, which may be useful for
input to non-SDDS-complaint versions of GENESIS.

– -totalCharge=coulombs — Gives the total charge of the beam in Coulombs.

– -chargeParameter=name — Gives the name of a parameter in inputfile where the total
charge in the beam is given.

– -wavelength=meters — This option is misnamed. It is actually the slice length in
meters.

– -slices=integer — The number of analysis slices to use.

– -steer — If given, then the transverse centroids for the bulk beam are all set to zero.
The relative centroid offsets of the slices are, of course, unchanged.

– removePTails=deltaLimit=value[,fit][,beamOutput={\em filename}\verb]— —
Remvoes the momentum tails from the beam. deltaLimit is the maximum absolute
value of (p − 〈p〉)/〈p〉 that will be accepted. If fit is given, then a linear fit to p as
a function of t is performed, and removal is based on the residuals from that fit. If
beamOutput is given, then the filtered beam data is written to the named file for review.

• author: R. Soliday, ANL/APS.

24

4.3 hdf2sdds

• description: Converts Hierarchical Data Format (HDF) to SDDS.

• example:

hdf2sdds ./ data.hdf data.sdds -withIndex

• synopsis:

hdf2sdds [HDF filepath] [HDF filename] [SDDSfile] [{-arraysPreferred |

-columnsPreferred}] [{-binary | -ascii}] [-withIndex] [-verbose]

• files:

HDF filepath is the name of the directory containing the HDF file.

HDF filename is the filename of the HDF file excluding the path.

SDDSfile is the SDDS output that is created.

• switches:

– {-arraysPreferred | -columnsPreferred} — Requests that the output be in the
form of an SDDS array or SDDS columns. By default, -columnsPreferred is used.

– {-binary | -ascii} — Requests that the output be binary or ASCII.

– -withIndex — An index column is added to the output file.

– -verbose — Prints out steps as the program runs.

• author: R. Soliday, ANL/APS.

25

4.4 plaindata2sdds

• description: Converts plain data files with a simple format to SDDS.

• example:

plaindata2sdds data.input data.output -inputMode=ascii "-separator= "

-parameter=time,long -column=x,double -column=y,double

• synopsis:

plaindata2sdds [Inputfile] [Outputfile] [-pipe[=in][,out]]

[-inputMode=<ascii|binary>] [-outputMode=<ascii|binary>]

[-separator=character] [-noRowCount] [-order=<rowMajor|columnMajor>]

[-parameter=name,type[,units=string][,desc=string][,symbol=string] ...]

[-column=name,type[,units=string][,desc=string][,symbol=string] ...]

[-nowarnings]

• files: Inputfile is a file that is similar to SDDS files in that it contains parameter and column
data. However this file does not contain SDDS header information. The column data does
not need to be preceded by a row count but it is recommended. Also the column data can be
separated by a user supplied character. White space on either side of the separator is allowed.
Binary plaindata files are also allowed.

Outputfile is the SDDS output that is created.

• switches:

– -pipe[=in][,out] — The standard SDDS Toolkit pipe option.

– -inputMode=<ascii|binary>— The plain data file can be read in ascii or binary format.

– -outputMode=<ascii|binary> — The SDDS data file can be written in ascii or binary
format.

– -separator=character— In ascii mode the columns of the plain data file are separated
by the given character.

– -noRowCount — The row count is not included prior to the beginning of the column
data. If the plain data file is a binary file then the row count must be included.

– -order=<rowMajor|columnMajor> — Row major order is the default. Here each row
of the plain data file consists of one element from each column. In column major order
each column is located entirely on one row.

– -parameter=name,type[,units=string][,description=string][,symbol=string]

— Add this option for each parameter in the plain data file.

– -column=name,type[,units=string][,description=string][,symbol=string] —
Add this option for each column in the plain data file.

• see also:

– sdds2plaindata (4.6)

– csv2sdds (4.1)

• author: R. Soliday, ANL/APS.

26

4.5 sdds2math

• description: sdds2math converts an SDDS file to a file that can be read into Mathematica.
The file contains a single Mathematica variable of the form:

sdds={description,coldef,pardef,arraydef,associates,tables}

description={text,contents}

coldef={coldef-1, coldef-2, ...}

coldef-n={name,units,symbol,format,type,fieldlength,description}

pardef={pardef-1, pardef-2, ...}

pardef-n={name,fixed_value,units,symbol,type,description}

arraydef={arraydef-1, arraydef-2, ...}

arraydef-n={name,units,symbol,format,type,fieldlength,group,description}

associates={associate-1, associate-2,...}

associate-n={sdds,filename,path,contents,description}

tables={table-1, table-2, ...}

table-n={parameters,data}

parameters={parameter-1, parameter-2, ...}

data={row-1, row-2, ...}

row-n={val-1, val-2, ...}

A number of Mathematica programs to extract information from this variable are available
in the file SDDS.m. To include these routines in your Mathematica program, put this file in
your working directory and use the following line in your Mathematica program:

Needs["SDDS‘"];

The programs are:

– SDDSRead[filename_String]—returns an SDDS structure from a file.

– SDDSWrite[sdds_,filename_String]—writes an SDDS structure to a file.

– SDDSGetColumnDefinitions[sdds_]—returns the list of column definitions.

– SDDSGetParameterDefinitions[sdds_]—returns the list of parameter definitions.

– SDDSGetArrayDefinitions[sdds_]—returns the list of array definitions.

– SDDSGetAssociates[sdds_]—returns the list of associates.

– SDDSGetTable[sdds_,n_:1]—returns the nth table parameters,data.

– SDDSGetParameters[sdds_,n_:1]—returns the parameters from the nth table.

– SDDSGetParameter[sdds_,p_String,n_:1]—returns the value of parameter p from the
nth table.

– SDDSGetData[sdds_,n_:1]—returns the data matrix from the nth table.

– SDDSGetColumn[sdds_,c_String,n_:1]—returns the column named c from the nth
table.

– SDDSGetColumn[sdds_,m_,n_:1]—returns the mth column from the nth table.

– SDDSGetRow[sdds_,m_,n_:1]—returns the mth row from the nth table.

– SDDSGetNColumns[sdds_]—returns the number of columns.

27

– SDDSGetNParameters[sdds_]—returns the number of parameters.

– SDDSGetNArrays[sdds_]—returns the number of arrays.

– SDDSGetNAssociates[sdds_]—returns the number of associates.

– SDDSGetNTables[sdds_]—returns the number of tables.

– SDDSGetNRows[sdds_,n_:1]—returns the number of rows in the nth table.

– SDDSGetColumnNames[sdds_]—returns the list of column names.

– SDDSGetParameterNames[sdds_]—returns the list of parameter names.

– SDDSGetArrayNames[sdds_]—returns the list of array names

– SDDSGetAssociateNames[sdds_]—returns the list of associate names.

• examples: Convert a snapshot to a Mathematica file.

sdds2math par.050695.snap par.050695.m

• synopsis:

sdds2math [SDDSfilename] [outputname] [-pipe[=input][,output]] [-comments]

[-verbose] [-format=printfString]

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– comments — Put helpful Mathematica comments in the file.

– verbose — Write header information to the terminal like sddsquery.

– format — Format for doubles (Default: %g)

• author: K. Evans, Jr., ANL/APS.

28

4.6 sdds2plaindata

• description: Converts SDDS data to a plain data file with simple formatting.

• example:

sdds2plaindata data.input data.output -outputMode=binary "-separator= "

-parameter=time -column=x -column=y

• synopsis:

sdds2plaindata [Inputfile] [Outputfile] [-pipe[=in][,out]]

[-outputMode=<ascii|binary>] [-separator=string] [-noRowCount]

[-order=<rowMajor|columnMajor>] [-parameter=name,[,format=string] ...]

[-column=name,[,format=string] ...] [-nowarnings]

• files: Inputfile is the SDDS input file.

Outputfile is a file that is similar to SDDS files in that it contains parameter and column
data. However this file does not contain SDDS header information. The column data does
not need to be preceded by a row count but it is recommended. Also the column data can be
separated by a user supplied string. Binary plaindata files are also allowed.

• switches:

– -pipe[=in][,out] — The standard SDDS Toolkit pipe option.

– -outputMode=<ascii|binary> — The plain data file can be written in ascii or binary
format.

– -separator=string — In ascii mode the columns can be separated by the given string.

– -noRowCount — The number of rows will not be included in the plain data file. If binary
mode is used the number of rows will always be written to the file.

– -order=<rowMajor|columnMajor> — Row major order is the default. Here each row
consists of one element from each column. In column major order each column is written
entirely on one row.

– -parameter=name,[,format=string] — Add this option for each parameter to add to
the plain data file.

– -column=name,[,format=string] — Add this option for each column to add to the
plain data file.

• see also:

– plaindata2sdds (4.4)

• author: R. Soliday, ANL/APS.

29

4.7 sdds2spreadsheet

• description: sdds2spreadsheet converts an SDDS file to a file that can be read into most
spreadsheet programs. You need to consult your particular spreadsheet program to see how
it reads ASCII files. For Wingz, the conversion is automatic. Excel 5.0 will bring up its Text
Import Wizard.

Notes:

1. Excel lines must be shorter than 255 characters. The Wingz delimiter can only be \t.

2. The program sddsprintout with the -spreadSheet option is intended to replace the
function of sdds2spreadsheet. It allows greater control of what data is output and how
it is formatted.

• examples: Convert a snapshot to a Wingz spreadsheet.

sdds2spreadsheet par.050695.snap par.050695.wkz

Convert a snapshot to an Excel text file.

sdds2spreadsheet par.050695.snap p050695.txt

• synopsis:

sdds2spreadsheet [SDDSfilename] [outputname] [-pipe[=input][,output]]

[-delimiter=string] [-all] [-verbose]

• switches:

– pipe — The standard SDDS Toolkit pipe option.

– delimiter — Delimiter string (Default is ”�”).

– all — Write parameter, column, and array information. (Default is data and parameters
only)

– verbose — Write header information to the terminal like sddsquery.

• author: K. Evans, Jr., ANL/APS.

30

4.8 sdds2stream

• description:

sdds2stream provides stream output to the standard output of data values from a group of
columns or parameters. Each line of the output contains a different row of the tabular data or
a different parameter. Values from different columns are separated by the delimiter string. If
-page is not employed, all data pages are output sequentially. If multiple filenames are given,
the files are processed sequentially in the order given.

• examples: To output values of tunes for each page, one line per page:

sdds2stream APS.twi -parameters=nux,nuy -delimiter=" "

To output values of columns ElementName and betax for the first data page:

sdds2stream APS.twi -column=ElementName,betax -page=1

• synopsis:

sdds2stream {inputFileList | -pipe[=input]} [-page=pageNumber]

[-delimiter=delimitingString] { -columns=columnName[,columnName...] |

-parameters=parameterName[,parameterName...] |

-arrays=arrayName[,arrayName...] } [-filenames] [-rows] [-noquotes]

[-ignoreFormats] [-description]

• files: inputFileList is a space-separated list of SDDS filenames.

• switches:

– -pipe[=input] — The standard SDDS Toolkit pipe option.

– -page=page-number — Specifies the number of the data page for which output is
desired. Recall that pages are numbered sequentially beginning with 1. More complete
control of which pages are output may be obtained using sddsconvert or sddsprocess
as a filter.

– -delimiter=delimitingString — Specifies the delimiting string to be printed to sep-
arate row entries or parameters. The delimiter is printed with printf, so that any of
the usual escape sequences may be employed.

– columns=columnName[,columnName...] — Specifies the names of the columns for
which output is desired. For each row of each data page, the specified columns are
printed on a single line, separated by the delimiting string. The default delimiting string
is a single space.

– -parameters=parameterName[,parameterName...] — Specifies the names of the
parameters for which output is desired. For each row of each data page, the specified
parameters are printed on a single line, separated by the delimiting string. However,
since the default delimiting string is a newline, the parameters end up on separate lines.

– arrays=arrayName[,arrayName...] — Specifies the names of the arrays for which
output is desired.

– filenames — Specifies that the filename will be printed out as each file is processed.

31

– rows — Specifies that the number of rows per page for the tabular data section will be
printed out.

– noquotes — Specifies that whitespace-containing string data will be printed without
the default double-quotes.

– ignoreFormats — Specifies that the format data supplied in the file is to be ignored.
Guarantees printing of floating point data to full precision.

– description — Specifies printing of the description data for the data set.

• see also:

– Data for Examples (see 3.3)

– sddsprintout (4.51)

– sddsconvert (4.20)

– sddsprocess (4.52)

• author: M. Borland, ANL/APS.

32

4.9 sddsbaseline

• description: sddsbaseline performs baseline removal for SDDS column data. Several
methods of determining the baseline are provided.

• examples: Remove baselines from a video image organized with each scan line in a separate
column. The baseline is determined by looking at 10 points at either end of each line and
averaging the pixel count for these points.

sddsbaseline image.sdds image1.sdds -columns=VideoLine* -select=endpoints=10

-method=average

• synopsis:

sddsbaseline [input] [output] [-pipe=[in][,out]] [-columns=listOfNames]

-select={endPoints=number | -outsideFWHA=multiplier | -antiOutlier=passes}
-method={fit | average} [-nonnegative

[-despike=passes=number,widthlimit=value] [-repeats=count]]

• files: input is an SDDS file containing one or more pages of data to be processed. output is
an SDDS file in which the result is placed. Columns that are not processed are copied from
input to output without change.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -columns=listOfNames — Specifies an optionally-wildcarded list of names of columns
from which to remove baselines.

– -select={endPoints=number |

-outsideFWHA=multiplier | -antiOutlier=passes} — Specifies how to select the
points from which to determine the baseline. endPoints specifies selecting number val-
ues from the start and end of the column. outsideFWHA specifies selecting all values that
are outside multiplier times the full-width-at-half-amplitude (FWHA) of the pixel count
distribution. —verb—antiOutlier— specifies selecting all values that are not deemed
outliers in the 2-sigma sense in any of passes inspections. These last two options implic-
itly assume that the statistical distribution of the pixel counts is baseline dominated.

– -method={fit | average} — Specifies how to compute the baseline from the selected
points. fit specifies fitting a line to the values (as a function of index). average specifies
taking a simple average of the values.

– -nonnegative [-despike=passes=number,widthlimit=value] [-repeats=count]

— Specifies that the resulting function after baseline removal must be nonnegative.
Any negative values are set to 0. In addition, despiking (as in sddssmooth) may be
applied after removal of negative values; this can result in the removal of positive noise
spikes. Giving -repeats allows applying the baseline removal procedure iteratively to
the data.

• see also:

– sddssmooth (4.63)

33

– sddscliptails (4.14)

• author: M. Borland, ANL/APS.

34

4.10 sddsbreak

• description: sddsbreak reads pages from an SDDS file and writes a new SDDS file con-
taining the same data, but with each of the input pages potentially separated into several
output pages. The separation involves breaking each input page at one or more locations as
determined by one of several user-defined criteria.

• examples: Limit the length of pages to 500 rows so that data may be viewed more easily:

sddsbreak par.bpm par.bpm1 -rowlimit=500

Break the page whenever a gap of more than 15 seconds is seen:

sddsbreak par.bpm par.bpm1 -gapin=Time,amount=15

• synopsis:

sddsbreak [-pipe=[input][,output]] [inputFile] [outputFile]

{ -gapIn=columnName[,{amount=value | factor=value}] |

-increaseOf=columnName | -decreaseOf=columnName

-changeOf=columnName[,amount=value[,base=value]]

-rowLimit=integer }

• files: inputFile is an SDDS file containing one or more pages of data to be broken up.
outputFile is an SDDS file in which the result is placed. Each page of outputFile contains the
parameter and array values from the page of inputFile that is its source.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -gapIn=columnName[,{amount=value | factor=value}] — Breaks the page when
the value in the named column has a gap. If the amount qualifier is given, then a gap is
defined as any occurence of successive values different by more than value. If this qualifier
is not given, then the value is computed as follows: the mean absolute difference (MAD)
between successive values for the first page which has more than 1 row is computed; if
the factor qualifier is given, then the gap amount is the MAD times the given value;
otherwise, it is the MAD times two.

– -increaseOf=columnName, -decreaseOf=columnName— These options cause a page
break whenever the value in the named column increases or decreases, respectively.

– -changeOf=columnName[,amount=value[,base=value]] — Breaks the page when the
value in the named column changes. If the amount qualifier is not given, then any
change is sufficient to break the page. Otherwise, the page is broken whenever the
quantity b(V − B)/Ac changes, where V is the value in the column, A is the value given
for amount, and B is the value given for base. If base is not given, then the value in
first row for the column is used.

– -rowLimit=integer — Breaks the page after the specified number of rows.

• see also:

– Data for Examples (see 3.3)

35

– sddscombine (4.17)

• author: M. Borland, ANL/APS.

36

4.11 sddscast

• description: sddscast can be ussed to change the data type of the elements in an SDDS
file.

• example: Convert the double columns of APS.twi to float (note that col1, col2,col3 are the
column names in APS.twi file):

sddscast APS.twi -cast=col,*,double,float

sddscast APS.twi -cast=col,’(col1,col2,col3)’,double,float

sddscast APS.twi -cast=col,’(col1,col4,col5)’,’(double,float,float)’,long

or:

sddscast APS.twi ’-cast=col,(col1,col4,col5),(double,float,float),long’

• files: inputFile is an SDDS file containing data to be processed. The outputFile argument is
optional. If it is not given, and if an output pipe is not selected, then the input file will be
replaced.

• switches:

– -cast=column|parameter|array,<names>,<typeNames>,<newType> names is of the
form ’name’ (with optional wildcards) or ’(name,name,....)’; typeNames is of the form
’(long,short,double,float,*)’ ; newType is long, short,double, or float.

– -pipe=[input][,output] –pipe flages.

– -noWarnings — Suppresses warning messages, such as file replacement warnings.

• author:H. Shang ANL/APS.

37

4.12 sddschanges

• description: sddschanges analyzes changes in column data from page to page in a file,
relative to reference data in a baseline file or from the first page. It requires that every page
in the file have the same number of rows. It produces a multipage output file containing the
row-by-row difference between the reference data and the data each page in the input file.

• examples: Compute the changes in the dispersion function for several APS lattices:

sddschanges APS.twi APS.changes -copy=s -changesIn=betax,betay,etax

The output file in this example would have one fewer pages than the input file. Each page
would contain the column s from the first page, along with the differences from the first
page for betax, betay, and etax. One could also compute the changes relative to the nominal
lattice:

sddschanges APS.twi -baseline=APS0.twi APS.changes -copy=s

-changeIn=betax,betay,etax

The output file would have one page for every page in the input.

• synopsis:

sddschanges [-pipe[=input][,output]] [inputFile] [outputFile]

[-copy=columnNames] [-changesIn=columnNames] [-baseline=referenceFileName

[-parallelPages]]

• files: inputFile is a multipage file containing the data for which changes are desired. out-

putFile is a multipage file containing the changes. The column names in outputFile for the
changes are created from those in inputFile by prepending the string “ChangeIn”.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -copy=columnNames— Specifies that the named columns should be transferred to the
output file without alteration. These data come from the baseline file or from the first
page of the input file. A comma-separated list of optionally wildcard-containing strings
may be given.

– -changesIn=columnNames— Specifies that the named columns should be transferred to
the output file after subtracting the corresponding values from the baseline file or from
the first page of the input file. A comma-separated list of optionally wildcard-containing
strings may be given.

– -baseline=referenceFileName — Specifies the name of an SDDS file from which the
reference data for changes should be taken.

– -parallelPages — Valid only with -baseline. Specifies that the “baseline” data for
each page of the input file shall be taken from the corresponding page of the baseline
file. This results in page-by-page subtraction of the two files.

• see also:

38

– Data for Examples (see 3.3)

– sddsenvelope (4.28)

• author: M. Borland, ANL/APS.

39

4.13 sddscheck

• description: sddscheck is a simple tool to allow checking a file to see if it is a valid SDDS
file, or if it is corrupted. The primary use is in shell scripts that need to detect such conditions.
sddscheck issues one of four messages: ok, nonexistent, badHeader, or corrupted. (See
sddsconvert (4.20) about recovering corrupted files.)

• examples: Under UNIX, one could do the following to check a file before plotting it:

if (‘sddscheck APS.twi‘ == "ok") plotTwissParameters APS.twi

where plotTwissParameters is a hypothetical plotting script.

• synopsis:

sddscheck filename

• files: filename is the name of a single file to be checked.

• switches:

– -printErrors — Causes the SDDS error traceback to be printed if the file is not ok.
This may be helpful in determining the problem with the file.

• see also:

– progrefsddsconvert

• author: M. Borland, ANL/APS.

40

4.14 sddscliptails

• description: sddscliptails removes the tails from functions, where a tail is a dubious
feature extending to the left or right of a peak.

• examples: Remove tails from profiles of beam spots after baseline removal and prior to
determining rms spot properties. This command clips the tails when the function falls to 1%
of its peak value.

sddscliptails input.sdds output.sdds -columns=VideoLine* -fractional=0.01

• synopsis:

sddscliptails [input] [output] [-pipe=[in][,out]] [-columns=listOfNames]

[-fractional=value] [-absolute=value] [-fwhm=multiplier]

[-afterzero[=bufferWidth]]

• files: input is an SDDS file containing one or more pages of data to be processed. output

is an SDDS file in which the result is placed. The output file will generally have fewer rows
than the input file, corresponding the the number of rows clipped.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -columns=listOfNames — Specifies an optionally-wildcarded list of names of columns
from which to remove tails.

– -fractional=value — Clip a tail if it falls below this fraction of the peak value of the
column.

– -absolute=value — Clip a tail if it falls below this absolute value. This value might
correspond, say, to a known noise level.

– -fwhm=multiplier — Clip a tail if it is beyond multiplier times the full-width-at-half-
maximum (FWHM) from the peak of the column.

– -afterzero[=bufferWidth] — Clip a tail if it is separated from the peak by values
equal to zero. If bufferWidth is specified, then a region bufferWidth wide is kept on
either side of the peak, if possible.

• see also:

– sddsbaseline (4.9)

• author: M. Borland, ANL/APS.

41

4.15 sddscollapse

• description: sddscollapse reads data pages from an SDDS file and writes a new SDDS
file containing a single data page. This data page contains only the values of the parameters
from the original file, with each parameter forming a column of the tabular data.

• examples: To create a new file containing the tunes and other parameters as columns:

sddscollapse APS.twi APS.parameters

To do a polynomial fit to nux as a function of nuy, and print the results out:

sddscollapse APS.twi -pipe=out | sddspfit -pipe=in fit.sdds -column=nux,nuy

-verbose

• synopsis:

sddscollapse [inputFile] [outputFile] [-pipe[=input][,output]]

• files: inputFile is the name of an SDDS data set to be collapsed. outputFile is the result.
Note that outputFile will not contain any information on the arrays or columns that are in
inputFile.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -noWarnings — Suppresses warnings about file overwrites.

• comment: In spite of the simplicity of the commandline, this is an extremely useful program.
A typical use might involve processing a multipage file using sddsprocess to, for example,
obtain statistical analyses of columns for each page; the results of such analyses are placed in
parameters. Using sddscollapse on this file would produce columns of statistical analyses,
with one row for each page. One might then further analyze the data using sddsprocess.
One could also use sddscombine to combine several collapsed, processed data sets into a
single file, which puts one formally back in the same position as when one started. In this
fashion, multi-level data analysis and collation is possible. This is done with some magnetic
measurements at APS.

• see also:

– Data for Examples (see 3.3)

– sddsprocess (4.52)

– sddscombine (4.17)

– sddsexpand (4.30)

• author: M. Borland, ANL/APS.

42

4.16 sddscollect

• description: sddscollect reorganizes tabular data from the input file to bring data from
several groups of similarly named columns together into a single column per group. In doing
so, it creates one page of output for every row on the input file. It also creates parameters to
hold data from columns that are not included in any group.

• examples: Take a data set with several columns of PAR BPM x and y readings (one set of
readings per row) and create a new file with one column for x readings and one column for y
readings, with each page containing one set of readings.

sddscollect par.bpm par.orbits -collect=suffix=x -collect=suffix=y

The output file has three columns, called x, y, and Rootname. The latter column contains
the original column names less the “x” (or “y”) suffix.

Do statistics on PAR BPM x and y readbacks, then collect the statistics into columns, one
column for each type of statistic:

sddsprocess par.bpm -pipe=out -process=P?P?[xy],spread,%sSpread

-process=P?P?[xy],ave,%sMean -process=P?P?[xy],stand,%sStDev | sddscollapse

| sddscollect -pipe=in parbpm.stat -collect=suffix=xSpread

-collect=suffix=xMean -collect=suffix=xStDev -collect=suffix=ySpread

-collect=suffix=yMean -collect=suffix=yStDev

The output file has columns named xSpread, ySpread, xMean, yMean, xStDev, and yStDev,
plus an additional column named Rootname. The latter column contains the remnants of
each original column name after the suffix is removed. Note that in the example, the remnant
names are the same for all the collections specified. If this were not true, sddscollect would
abort and give an error message.

• synopsis:

sddscollect [input] [output] [-pipe[=input][,output]]

-collect={suffix | prefix |

match}=match[,column=newName][,editCommand=<string>]

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -collect={suffix | prefix

| match}=match[,column=newName][,editCommand=<string>] — Specifies a string,
match, to look for at the end of (suffix mode), beginning of (prefix mode), or anywhere
in (match mode) column names in the input file. Data from all matching columns is
transferred into a single column in the output file. For prefix and suffix modes, the
default name of this column is the suffix or prefix string, while for match mode it is
created by applying the edit command to the matching column names. This may be
changed with the column qualifier.

This option may be given any number of times. However, all collections must produce
the same number of matches. Further the set of name remainders (i.e., the original
column name less the prefix or suffix, or following editing) must be the same for each
collection.

43

• see also:

– sddsregroup (4.55)

– sddstranspose (4.67)

– sddsEditing (??)

• author: M. Borland, ANL/APS.

44

4.17 sddscombine

• description: sddscombine combines data from a series of SDDS files into a single SDDS file
with one page for each page in each file. Data is added from files in the order that they are
listed on the command line. All of the data files must contain the columns and parameters
contained by the first; the program ignores any columns or parameters in a subsequent data
file that are not in the first data file.

• example: Combine several Twiss parameter files into one file, keeping page boundaries
separate.

sddscombine APS1.twi APS2.twi APS3.twi APSall.twi

• synopsis:

sddscombine [inputFileList] [outputFile] [-pipe[=input][,output]]

[-merge[=parameterName]] [-overWrite] [-sparse=integer] [-collapse]

[-delete={columns | parameters | arrays},matchingString[,...]]
[-retain={columns | parameters | arrays},matchingString[,...]]

• files: inputFileList is a list of space-seperated filenames to be combined. outputFile is a
filename into which the combined data is placed. If no -pipe options are given, the outputFile

is taken as the last filename on the commandline. To specify an output file with input from a
pipe, one uses sddscombine -pipe=input outputFile. Similarly to specify output to a pipe
with many input files, use sddscombine -pipe=output inputFileList. Since accidentally
leaving off the -pipe=output option for the last command might result in replacement of an
intended input file, the program refuses to overwrite an existing file unless the -overWrite

option is given. A string parameter (Filename) is included in outputFile to show the source
of each page.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -merge[=parameterName] — Specifies that all pages of all files are to be merged into a
single page of the output file. If a parameterName is given, successive pages are merged
only if the value of the named parameter is the same.

– overWrite — Forces sddscombine to overwrite outputfile if it exists.

– sparse={\em integer} — Specifies sparsing the tabular data in the input to retain
only every integer-th row.

– collapse — Specifies collapsing the data, as done by sddscollapse.

– -delete={columns | parameters |

arrays},matchingString[,matchingString...],
-retain={columns
| parameters | arrays},matchingString[,matchingString...] — These options
specify wildcard strings to be used to select entities (i.e., columns, parameters, or ar-
rays) that will respectively be deleted or retained (i.e., that will not or will appear in
the output). The selection is performed by determining which input entities have names
matching any of the strings. If retain is given but delete is not, only those entities

45

matching one of the strings given with retain are retained. If both delete and retain

are given, then all entities are retained except those that match a delete string without
matching any of the retain strings.

• see also:

– Data for Examples (see 3.3)

– sddscollapse (4.15)

• author: M. Borland, ANL/APS.

46

4.18 sddscongen

• description: Creates an SDDS data set by evaluating an rpn expression over a defined 2
dimensional grid. This data set may be plotted using sddscontour.

• example: This will generate a two-dimensional color-shaded map of the function
sin(4π(x2 + y2)) on the region x:[-1, 1] and y:[-1, 1]:

sddscongen example.sdds -xRange=-1,1,101 -yRange=-1,1,101

-zEquation="x x * y y * + 4 * pi * sin"

sddscontour example.sdds -shade example.sdds -equalAspect

• synopsis:

sddscongen outputfile -xRange=lower,upper,nPoints

-yrange=lower,upper,nPoints -zEquation=rpnExpression

[-rpnCommand=rpnExpression] [-rpnDefinitions=rpn-defnsFile]

• switches:

– xRange=lower,upper,nPoints, yRange=lower,upper,nPoints — Specifies the 2 di-
mensional grid over which data is generated. x is the horizontal variable and y the
vertical.

– -zEquation=rpnExpression — Specifies the rpn expression that is evaluated at each
point of the grid.

– -rpnCommand=rpnExpression — Specifies the name of a file containing rpn input. The
named file is read before any other operations are performed.

– -rpnDefinitions=rpn-defnsFile — Specifies a string to submit to rpn prior to begin-
ning evaluation of the equation on the grid.

• see also:

– sddscontour (4.19)

– rpn (4.72)

• author: M. Borland, ANL/APS.

47

4.19 sddscontour

• description: sddscontour makes contour and color-map plots from an SDDS data set col-
umn, or from a rpn expression in terms of the values in the columns of a data set. It supports
FFT interpolation and filtering. If the data set contains more than one data page, data from
successive pages is plotted on separate pages.

• example: This will generate a two-dimensional color-shaded map of the function
sin(4π(x2 + y2)) on the region x:[-1, 1] and y:[-1, 1]:

sddscongen example.sdds -xRange=-1,1,101 -yRange=-1,1,101

-zEquation="x x * y y * + 4 * pi * sin"

sddscontour example.sdds -shade example.sdds -equalAspect

• synopsis:

sddscontour SDDSfilename switches

• switches:

– Choice of what to plot:

[-quantity=columnName | -equation=rpnExpression |

-columnMatch=indepColumnName,matchingExpression]

∗ quantity — Specifies the name of the column to make a contour or color map of.

∗ equation — Specifies a rpn expression to make a contour or color map of. The
expression may refer to the values in the columns by the appropriate column name,
and may also refer to the variable values by name.

∗ columnMatch — Specifies plotting of all columns matching matchingExpression as
a function of the column indepColumnName. Each matching column is displayed as
a horizontal color bar.

In the case of the first two choices, the file must contain tabular data with at least one
numeric column, which will be organized into a 2d array with R rows and C columns. By
default, the values are assumed to come in row-major order (i.e., the file should contain
a series of R sequences each containing the C values of a single row). The parameters of
the 2d grid over which the plot is to be made are communicated to the program in one
of two ways:

1. The string parameters Variable1Name and Variable2Name contain the names of
the x and y axis variables, which I’ll represent as x and y respectively. The pro-
gram expects to find six more parameters, with names xMinimum, xInterval, and
xDimension, and similarly for y. These parameters must be numeric, and contain
the minimum value, the interval between grid points, and the number of points,
respectively, for the dimension in question. The data must be arranged so that y

varies fastest as the row in the file increases. Put another way, variable 1 is the row
index and variable 2 is the column index.

2. The numeric parameters NumberOfRows and NumberOfColumns contain the values
of R and C, respectively.

– rpn control:

48

[-rpnDefinitionsFiles=filename[,filename...]]

[-rpnExpressions=setupExpression[,setupExpression...]]

∗ rpnDefinitionsFiles — Specifies the names of files containing rpn expressions to
be executed before any other processing takes place.

∗ rpnExpressions — Specifies rpn expressions to be executed before any other pro-
cessing takes place, immediately after any definitions files.

– Shade and contour control:

{-shade=number[,min,max] | -contours=number[,min,max]}
[-labelContours=interval[,offset]]

∗ shade — Specifies that a color (or grey-scale) map should be produced, with the
indicated number of shades mapped onto the range from min to max. If min and
max are not given, they are taken to be equal to the minimum and maximum data
values.

∗ contours — Specifies that contour lines should be drawn, with the indicated number

of lines for the range from min to max. If min and max are not given, they are taken
to be equal to the minimum and maximum data values.

∗ labelContours — Specifies that every intervalth contour line, starting with the
offsetth line, should be labeled with the contour value.

– Image processing:

[-interpolate=nx,ny[,floor | ceiling | antiripple]]

[-filter=xcutoff,ycutoff]

∗ interpolate — Specifies that the 2d map should be interpolated to have nx times
more rows (or x grid points) and ny times more columns (or y grid points). Since
FFTs are used to do the interpolation, the original number of grid points must be
a power of 2, as must the factor. Giving a factor of 1 disables interpolation for the
dimension in question. floor, ceiling, and antiripple specify image processing
of the interpolated map. floor and ceiling respectively force values below (above)
the minimum (maximum) value of the data to be set equal to that value. antiripple
causes the map to be altered so that non-zero values in the new map between zero
values on the original map are set to zero; this suppresses ripples that sometimes
occur in regions where the data was originally all zero.

∗ filter — Applies low-pass filters to the data with the specified normalized cutoff
frequencies. The integer cutoff values give the number of frequencies starting at the
Nyquist frequency that are to be eliminated.

– Plot labeling:

[-xLabel=string] [-yLabel=string] [-title=string] [-topline=string]

[-topTitle] [-noLabels] [-noScales] [-dateStamp]

∗ xLabel, yLabel, title, topline — These specify strings to be placed in the various
label locations on the plot.

∗ topTitle — Requests that the title label be placed at the top of the plot, rather
than at the bottom.

∗ noLabels — Requests that no labels be placed on the plot.

∗ noScales — Requests omission of the numeric scales.

49

∗ noBorder — Requests omission of the border around the data. Implies -no_scales.

∗ dateStamp — Requests that the date and time be placed on the pot.

– Data scaling:

[-deltas[={fractional | normalize}]] [-logscale[=floor]]

∗ deltas — For use with -columnMatch option only. Specifies plotting only differ-
ential values (relative to the mean of each column). If the fractional qualifier is
given, then the differential values normalized to the individual means are plotted.
If the normalize qualifier is given, then all differential values are normalized to the
range [-1, 1] before plotting.

∗ logscale — Specifies plotting the base-10 logarithm of the values. If a floor value is
given, it is added to each value prior to taking the logarithm; this can help prevent
taking the log of zero, for example.

– Miscellaneous plot control:

[-scales=xl,xh,yl,yh] [-device=name[,deviceArguments]] [-swapxy]

[-equalAspect[=-1,1]] [-noBorder]

∗ scales — Specifies the extent of the plot region.

∗ device — Specifies the device name and optional device-specific arguments.

∗ swapxy — Requests that the horizontal and vertical coordinates be interchanged.

∗ equalAspect — Requests plotting with an aspect ratio of 1. If the ’1’ qualifier is
given, then the aspect ratio is achieved by changing the size of the plot region within
the window; this is the default. If the ’-1’ qualifier is given, then the aspect ratio is
achieved by changing the size of the plot region in user’s coordinates.

∗ noBorder — Specifies that no border will be placed around the graph.

– Miscellaneous:

[-output=filename] [-verbosity[=level]]

∗ output — Requests SDDS output of a new file containing the data with any modi-
fications resulting in the processing requested.

∗ verbosity — Sets the verbosity level of informational printouts. Higher integer
values of the level parameter result in more output.

• see also:

– sddscongen (4.18)

– sddshist2d (4.37)

– sddsplot (4.50)

– rpn (4.72)

• author: M. Borland, ANL/APS.

50

4.20 sddsconvert

• description: sddsconvert converts SDDS files between ASCII and binary, and allows
wildcard-based filtering-out of unwanted columns and/or rows, as well as renaming of columns.
N.B.: it is not recommended to use sddsconvert to convert a binary SDDS file to ASCII, then
strip the header off and read the ASCII file. This completely bypasses the self-describing as-
pects of the SDDS file and is not robust. If the program that creates the SDDS file is changed
so that the columns are created in a different order, the program that reads the ASCII
file will produce unexpected results. Use sdds2plaindata (4.6), sddsprintout (4.51), or
sdds2stream (4.8) for conversion to non-self-describing files. In this way, you can assure the
order of the data is fixed.

• example: Convert APS.twi to binary:

sddsconvert -binary APS.twi

Convert APS.twi to binary and delete the alphax and alphay columns:

sddsconvert -binary APS.twi -delete=column,’alpha?’

• synopsis:

sddsconvert [inputFile] [outputFile] [-pipe[=input][,output]]

[{-binary | -ascii}] [-fromPage=number] [-toPage=number]

[-delete={columns | parameters | arrays},matchingString[,matchingString...]]
[-retain={columns | parameters | arrays},matchingString[,matchingString...]
[-rename={columns | parameters | arrays},oldname=newname

[,oldname=newname...]]

[-editNames={columns | parameters | arrays},matchingString,editString
[-description=text,contents]

[-recover[=clip]] [-linesPerRow=number] [-nowarnings] [-acceptAllNames]

• files: inputFile is an SDDS file containing data to be processed. The outputFile argument is
optional. If it is not given, and if an output pipe is not selected, then the input file will be
replaced.

• switches:

– {-binary | -ascii} — Requests that the output be binary or ASCII.

– fromPage=number — Specifies the first data page of the file that will appear in the
output. By default, the output starts with data page 1.

– toPage=number — Specifies the last page of the file that will appear in the output. By
default, the output ends with the last data page in the file.

– -delete={columns | parameters |

arrays},matchingString[,matchingString...],
-retain={columns
| parameters | arrays},matchingString[,matchingString...] — These options

51

specify wildcard strings to be used to select entities (i.e., columns, parameters, or ar-
rays) that will respectively be deleted or retained (i.e., that will not or will appear in
the output). The selection is performed by determining which input entities have names
matching any of the strings. If retain is given but delete is not, only those entities
matching one of the strings given with retain are retained. If both delete and retain

are given, then all entities are retained except those that match a delete string without
matching any of the retain strings.

– -rename={columns | parameters | arrays},oldname=newname
[,oldname=newname...] — Specifies new names for entities in the output data set. The
entities must still be referred to by their old names in the other commandline options.

– -editNames={columns | parameters | arrays},matchingString,editString —
Specifies creation of new names for entities of the specified type with names match-
ing the specified wildcard string. Editing is performed using commands reminiscent of
emacs keystrokes. For details on editing commands, see SDDS editing (4.71).

– -description=text,contents — Sets the description fields for the output.

– -recover[=clip] — Asks for attempted recovery of corrupted data. If the qualifier is
given, then all data from a corrupted page is ignored. Otherwise, sddsconvert tries to
save as much data from the corrupted page as it can; typically, it is able to save part of
the tabular data and all of the array and parameter data.

– -linesPerRow=number — Sets the number of lines of text output per row of the tabular
data, for ASCII output only.

– -noWarnings — Suppresses warning messages, such as file replacement warnings.

– -acceptAllNames — Forces acceptance of any name for an SDDS data element (e.g., a
column). This can be used with the rename or editNames options to fix invalid names
in SDDS files. This option is provided for backward compatibility to the original version
of SDDS, which allowed arbitrary characters in element names.

• see also:

– Data for Examples (see 3.3)

– sddsprocess (4.52)

– SDDS editing (4.71)

• author: M. Borland, ANL/APS.

52

4.21 sddsconvolve

• description: sddsconvolve performs discrete Fourier convolu-
tion/deconvolution/correlation of signals in two files. It assumes that spacing of points is
the same in both input files.

• example: Compute the result of a signal applied to a system with a known impulse response.

sddsconvolve signal.sdds impulseResponse.sdds signalResponse.sdds

-signalColumns=t,VSignal -responseColumns=t,VImpulse

-outputColumns=t,VOutput

• synopsis:

sddsconvolve signal-file response-file output [-pipe[=in][,out]]

-signalColumns=indepColumn,dataName -responseColumns=indepColumn,dataName

-outputColumns=indepColumn,dataName [-deconvolve [-noiseFraction=value] |

-correlate]

• files: The meaning of the files depends on whether the -deconvolve or -correlate options
are given. If neither option is given, then signal-file is the file containing the signal that is
imposed on the system, response-file is the impulse response of the system, and output is the
computed response of the system to the signal. If -deconvolve is given, then signal-file is the
response of the system to the signal, response-file is the impulse response of the system, and
output is the computed signal imposed on the system. If -correlate is given, then signal-file

and response-file contain two equivalent signals, while output contains the computed Fourier
correlation; physically, this tells over what time scale the two functions have correlated values.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -signalColumns=indepColumn,dataName — Specifies the names of the data columns
from signal-file (the first data file).

– -responseColumns=indepColumn,dataName — Specifies the names of the data columns
from response-file (the second data file).

– -outputColumns=indepColumn,dataName — Specifies the desired names of the result
in the file output.

– -deconvolve — Specifies deconvolution instead of convolution.

– -noiseFraction=value — Specifies the amount of noise to allow in the deconvolution
to prevent division by zero, as a fraction of the maximum power in the impulse response
function.

– -correlate — Specifies correlation instead of convolution.

• author: M. Borland, ANL/APS.

53

4.22 sddscorrelate

• description: sddscorrelate computes correlation coefficients and correlation significance
between column data. The correlation coefficient between columns i and j is defined as

Cij =
〈(xi − 〈xi〉)(xj − 〈xj〉)〉

√

〈(xi − 〈xi〉)2〉〈(xj − 〈xj〉)2〉

If Cij = 1, then the variables are perfectly correlated, whereas if Cij = −1, they are perfectly
anticorrelated. The correlation significance is the probability that the observed correlation
coefficient could happen by chance if the variables were in fact uncorrelated. Hence, a very
small correlation significance means that the variables are probably correlated.

• examples: Find the correlations among beam-position-monitor x values in par.bpm:

sddscorrelate par.bpm par.cor -column=’*x’

Find the correlations of these readouts with one specific readout only:

sddscorrelate par.bpm par.cor -column=’*x’ -withOnly=P1P1x

• synopsis:

sddscorrelate [-pipe=[input][,output]] [inputFile] [outputFile]

[-columns=columnNames] [-excludeColumns=columnNames] [-withOnly=columnName]

[-rankOrder] [-stDevOutlier[=limit=factor][,passes=integer]]

• files: inputFile is an SDDS file containing two or more columns of data. For each page of the
file, outputFile contains the correlation coefficients and significance for every possible pair-
ing of variables requested. outputFile also contains three string columns: Correlate1Name,
Correlate2Name, and CorrelatePair. These are respectively the name first column in
the analysis, the name of the second column in the analysis, and a string of the form
Name1.Name2.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -columns=columnNames— Specifies the names of columns to be included in the analysis.
A comma-separated list of optionally wildcard-containing names may be given.

– -excludeColumns=columnNames — Specifies the names of columns to be excluded from
the analysis. A comma-separated list of optionally wildcard-containing names may be
given.

– -withOnly=columnName — Specifies that one of the variables for each correlation will
be the named column.

– -rankOrder — Specifies computing rank-order correlations rather than standard corre-
lations. This is considered more robust that standard correlations.

54

– -stDevOutlier[=limit=factor][,passes=integer] — Specifies standard-deviation-
based outlier elimination on each pair of columns prior to computation of the correlation
coefficient. Any pair of values is ignored if one or both values are outliers relative to the
column from which they come. The limit qualifier specifies the allowed deviation from
the mean in standard deviations; the default is 1. The passes qualifier specifies how
many times the outlier elimination (including recomputation of the mean and standard
deviation) is performed; the default is 1.

• author: M. Borland, ANL/APS.

55

4.23 sddsderiv

• description: sddsderiv differentiates one or more columns of data as a function of a common
column. The program will perform error propagation if error bars are provided in the data
set.

• examples: Find the derivatives of columns J0 and J1 as a function of z:

sddsderiv bessel.sdds bessel.deriv -differentiate=J0,J1 -versus=z

• synopsis:

sddsderiv [-pipe=[input][,output]] [input] [output]

-differentiate=columnName[,sigmaName] ... -versus=columnName[,sigmaName]

[-interval=integer] [-SavitzkyGolay=left,right,fitOrder[,derivOrder]]

[-mainTemplates=item=string[,...]] [-errorTemplates=item=string[,...]]

• files: input is an SDDS file containing columns of data to be differentiated. If it contains
multiple data pages, each is treated separately. The independent quantity along with the
requested derivatives are placed in columns in output. By default, the derivative column
name is constructed by appending Deriv to the variable column name. If applicable, the
column name for the derivative error is constructed by appending DerivSigma. The data
with respect to which the derivative is taken should be monotonically ordered.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -differentiate=columnName[,sigmaName — Specifies the name of a column to differ-
entiate, and optionally the name of the column containing the error in the differentiated
quantity. May be given any number of times.

– -versus=columnName[,sigmaName — Specifies the name of the independent variable
column, and optionally the name of the column containing its error.

– -interval=integer — Specifies the spacing of the data points used to approximate the
derivative. The default value of 2 specifies that the derivative for each point will be
obtained from values 1 row above and 1 row below the point. In general (ignoring end
points, which require special treatment):

dy

dx
[i] ≈ y[i + Interval/2] − y[i − Interval/2]

x[i + Interval/2] − x[i − Interval/2]

– [-SavitzkyGolay=left,right,fitOrder[,derivOrder]]

— Specifies using a Savitzky-Golay smoothing filter to perform the derivative, which
involves fitting a polynomial of fitOrder through left+right+1 points and then giving the
derivative of the fitted curve. derivOrder is 1 by default and gives the order of derivative
to take.

– -mainTemplates=item=string[,...] — Specifies template strings for names and def-
inition entries for the derivative columns in the output file. item may be one of name,
description, symbol. The symbols “%x” and “%y” are used to represent the indepen-
dent variable name and the name of the differentiated quantity, respectively.

56

– -errorTemplates=item=string[,...] — Specifies template strings for names and
definition entries for the derivative error columns in the output file. item may be one of
name, description, the independent variable name and the name of the differentiated
quantity, respectively.

• see also:

– sddsinteg (4.38)

• author: M. Borland, ANL/APS.

57

4.24 sddsderef

• description: sddsderef allows array and column dereferencing based on constants or on
data in parameters and columns.

• examples: Let arrayData be a file containing a string array named MessageText and a
column named MessageIndex containing integers. The integers are indices into the string
array. To create a new column called Message giving the message text for each index, the
following command would be used:

sddsderef arrayData -column=Message,arraySource=MessageText,MessageIndex

• synopsis:

sddsderef [input] [output] [-pipe[=input][,output]]

-column=newName,{columnSource | arraySource}=name,indexName[,indexName1...]
-parameter=newName,{columnSource | arraySource}=name,

indexName[,indexName1...]

-constant=newName,{columnSource | arraySource}=name,
indexValue[,indexValue...]

[-outOfBounds={exit | delete}]

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -column=newName,{columnSource | arraySource}=name,indexName
[,indexName1...] — Creates a new column named newName containing values found
by dereferencing the array (or column) name using the index or indices in the named
columns.

– -parameter=newName,{columnSource | arraySource}=name,indexName
[,indexName1...] — Creates a new parameter named newName containing values
found by dereferencing the array (or column) name using the index or indices in the
named parameters. A new value is thus generated for the parameter for each page.

– -constant=newName,{columnSource | arraySource}=name,indexValue
[,indexValue...] — Creates a new parameter named newName containing values
found by dereferencing the array (or column) name using the index or indices given
(as explicit values). Unless the array (or column) varies from page to page, the new
parameter will have the same value on each page.

– -outBounds={exit | delete} — Specifies behavior in the event that an index value is
out of bounds (i.e., less than 0, or greater than or equal to the number of array elements
or rows). If exit is given, the program aborts with an error; this is the default behavior.
If delete is given, then the source row or page for the index is omitted from the output.

• author: M. Borland, ANL/APS.

58

4.25 sddsdigfilter

• description:

sddsdigfilter performs time-domain digital filtering of columns of data. Filters can be
combined in series and/or cascade to produce complex filter characteristics. In addition to
allowing simple 1-pole lowpass and highpass filters, filter charateristics can be defined using
either digital ’Z’ or analog ’S’ domain transfer functions.

A digital filter has a Z transform given by

b0 + b1z
−1 + . . . + bnz−n

a0 + a1z−1 + . . . + anz−n
,

while an analog filter has a Laplace transform given by

d0 + d1s
1 + . . . + dnsn

c0 + c1s1 + . . . + cnsn
,

• examples: These examples assume the existence of a file data.wf containing a waveform
stored as a column value that is a function of a column time that has units of seconds.

Pass data through lowpass filter with a -3dB cutoff of 0.01 Hz:

sddsdigfilter data.wf -col=time,value result.wf -low=1,0.01.

Bandstop filter between 10 Hz and 100 Hz:

sddsdigfilter data.wf -col=time,value result.wf -low=1,10 -high=1,100

Bandpass filter between 10 Hz and 100 Hz:

sddsdigfilter data.wf -col=time,value result.wf -low=1,100 -cascade

-high=1,10

Analog transfer function:

sddsdigfilter data.wf -col=time,value result.wf

-analog=D,1.0,0.01,C,0.1,0.3,1.6

Five-sample digital delay:

sddsdigfilter data.wf -col=time,value result.wf -digital=B,0,0,0,0,0,1

• synopsis:

sddsdigfilter [inputFile] [outputFile] [-pipe=[input][,output]]

-columns=xName,yName [-proportional=gain] [-lowpass=gain,cutoffFrequency]

[-highpass=gain,cutoffFrequency]

[-digitalfilter=sddsfile,aCoeffName,bCoeffName

[-digitalfilter=[A,a0,a1,..,am][,B,b0,b1,..,bn]

[-analogfilter=sddsfile,cCoeffName,dCoeffName

[-analogfilter=[C,c0,c1,..,cm][,D,d0,d1,..,dn] [-cascade] [-verbose]

59

• files: Two file names are required: the name of the existing input file, and the name of the
output file to be produced. The input file must contain at least two columns: one containing
to data to be filtered (yName) and the other giving time information (xName). A linear time
scale is assumed for xName. The output file is a copy of the input file with an additional
column called DigFilteredyName where yName would be the name of the original y-column.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe switch.

– -columns=xName,yName — The names of the input file data columns.

– -proportional=gain — Defines a gain stage, where gain is the multiplier applied to
the data.

– -lowpass=gain,cutoffFrequency — Defines a lowpass filter stage, where gain is the
mutiplier applied to the data and cutoffFrequency is the -3dB point of the filter in units
appropriate to the supplied xName.

– -highpass=gain,cutoffFrequency — Defines a highpass filter stage, where gain is the
multiplier applied to the data and cutoffFrequency is the -3dB point of the filter in units
appropriate to the supplied xName.

– -digitalfilter=sddsfile,aCoeffName,bCoeffName— Defines a digital filter with co-
efficients in the supplied SDDS coefficient file. This file must cointain two columns con-
taining the A and B coefficients of a digital ’Z’ transfer function. Note that control
theory convention assumes that the A0 coefficient is always 1.0. To ensure consistency
with the SDDS file, the a0 coefficient is the first row in the A-column and must be
implicitly supplied. Although there is little benefit to setting a0 to anything other than
1.0, it is allowed.

– -digitalfilter=[A,a0,a1,...,am][,B,b0,b1,...,bn]— Defines a digital filter with
the A and B coefficients of the digital ’Z’ transfer function supplied on the command
line. Either A or B or both coefficients can be supplied. If no A coefficients are supplied,
a0 is set to 1.0. Equally, if no B coefficients are supplied, b0 is set to 1.0. If different
numbers of A and B coefficients are suppied, the filter order is determined from the
largest order.

– -analogfilter=sddsfile,cCoeffName,dCoeffName— Defines an analog filter with co-
efficients in the supplied sdds cefficient file. This file must cointain two columns contain-
ing the C and D coefficients of an analog ’s’ transfer function. Conversion to the digital
domain is done using a bilinear transform. Note that the user must ensure adequate
data sampled, since the general format does not allow frequency warping based on the
filter cutoff frequency.

– -analogfilter=[A,a0,a1,...,am][,B,b0,b1,...,bn]— Defines an analog filter with
the C and D coefficients of the analog ’S’ transfer function supplied on the command
line. Either C or D or both coefficients can be supplied. If no C coefficients are supplied,
then c0 is set to 1.0. Equally, if no D coefficients are supplied, then d0 is set to 1.0.
Conversion to the digital domain is done using a bilinear transform. Note that the user
must ensure adequate data sampled, since the general format does not allow frequency
warping based on the filter cutoff frequency.

– -cascade — Defines the start of a new filter stage. Any number of filter stages can be
supplied for a single data set. If more than one filter is defined, then the outputs are

60

summed unless the -cascade switch is supplied between the filter definitions in which
case the output of the first filter stage is fed into the input of the subsequent filter stage.

– -verbose — Prints the filter coefficients for each filter stage.

• references — The digital filtering routines were adapted from Stearns and David, Signal

Processing Algorithms in Fortran and C, Prentice Hall, 1993

• author: John Carwardine, Argonne National Laboratory

61

4.26 sddsdistest

• description: sddsdistest performs the Kolmogorov-Smirnov (K-S) test on a set of numbers
to determine how likely those numbers are to have been drawn from a specified statistical
distribution (e.g., gaussian, poisson).

• example: Try the K-S test on random numbers generated by sddsprocess

sddssequence -pipe=out -define=i,type=long

-sequence=begin=0,end=9999,delta=1 | sddsprocess -pipe

-define=column,gaussRN,grnd -define=column,uniformRN,rnd | sddsdistest -pipe

-test=ks -gaussian -column=gaussRN -column=uniformRN | sddsprintout -pipe

-column=ColumnName -column=distestSigLevel

The result is

ColumnName distestSigLevel ------------------------------------- gaussRN

4.019061e-01 uniformRN 1.598565e-32

which shows that the K-S test accurately distinguishes between numbers drawn from the two
distributions. The probability that the numbers in column uniformRN are from a gaussian
distribution is very small, whereas the probability that the numbers in column gaussRN are
from a gaussian distribution is 40%.

• synopsis:

sddsdistest [input] [output] [-pipe=[in][,out]] -column=name[,sigma=name]

... -exclude=name[,name...] ... -gaussian | -poisson | -student |

-chisquared [-degreesOfFreedom=value | @parameterName]

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -column=name[,sigma=name] — Specifies the name of a column to test, and optionally
the name of the column with the measurement error for the each test value. name may
contain wildcards. The sigma name may contain “%s”, for which each column name is
substituted to obtain the corresponding sigma name. Multiple column options may be
given.

– -exclude=name[,name...] — Specifies the names of columns to exclude from testing.

– -gaussian | -poisson | -student | -chisquared — Specifies the model distribu-
tion against which to test the data.

– -degreesOfFreedom=value | @parameterName — Specifies the number of degrees of
freedoms to assume for the model distribution in the case of student and chi-squared
distribution. The first form specifies a fixed value, whereas the second specifies taking
the value for each page from the named parameter.

• author: M. Borland, ANL/APS.

62

4.27 sddsendian

• description:

sddsendian converts numerical data in an SDDS file from big-endian to little-endian or vice
versa. This is needed prior to transferring binary data from one computer to another if the
two computers have different endianess.

• synopsis:

sddsendian [inputFile] [outputFile] [-pipe[=input][,output]]

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

• author: M. Borland, ANL/APS.

63

4.28 sddsenvelope

• description: sddsenvelope analyzes column data across pages to find minima, maxima,
averages, standard-deviations, etc., on a row-by-row basis. It produces a single-page output
file containing one column for each analysis requested. It will also copy through data from
the first page into the output file. It requires that each page of the input file have the same
number of rows.

• examples: Find the minimum and maximum beta functions for a set of APS lattices:

sddsenvelope APS.twi APS.twi.env -copy=s -minimum=beta? -maximum=beta?

• synopsis:

sddsenvelope [-pipe=[input][,output]] [input] [output] [-copy=columnNames]

[-maximum=columnNames] [-minimum=columnNames] [-mean=columnNames]

[-sum=power,columnNames] [-standardDeviation=columnNames] [-rms=columnNames]

[-slope=independentVariableName,columnNames]

[-intercept=independentVariableName,columnNames] [-median=columnNames]

[-decileRange=columnNames]

• files: inputFile is a multipage file containing the data for which row-by-row statistics are
desired. outputFile is a single-page file containing the statistics. The column names in
outputFile are created from those in the input file by appending the appropriate suffix from
the following list: Max, Min, Mean, StDev, RMS, Sum, Slope, or Intercept.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -copy=columnNames — Specifies that the named columns should be transferred to the
output file without alteration. These data come from the first page of the input file. A
comma-separated list of optionally wildcard-containing strings may be given.

– -maximum=columnNames, -minimum=columnNames, -mean=columnNames,
-rms=columnNames, -median=columnNames, -decileRange=columnNames — Specifies
that the named columns should be analysed in the indicated fashion. A comma-separated
list of optionally wildcard-containing strings may be given. Decile range is the spread
between the 90% and 10% points on the distribution.

– -sum=power,columnNames —Specifies that the named columns should be analysed in
the indicated fashion, i.e., that each output row should be the sum of the values to the
indicated power. A comma-separated list of optionally wildcard-containing strings may
be given.

– -slope=independentVariableName,columnNames,

-intercept=independentVariableName,columnNames— Specifies that the named
columns should be analysed to get the slope or intercept with respect to the parameter
independentVariableName. A comma-separated list of optionally wildcard-containing
strings may be given for the columnNames.

• see also:

64

– Data for Examples (see 3.3)

– sddschanges (4.12)

• author: M. Borland, ANL/APS.

65

4.29 sddseventhist

• description: sddseventhist analyzes labeled events in a dataset to provide histograms of
the occurences of each type of event. It can also histogram the overlap off all types of events
with a single type of event.

• synopsis:

sddseventhist [-pipe=[input][,output]] [inputFile] [outputFile]

-dataColumn=columnName -eventIdentifier=columnName

[-overlapEvent=eventValue] [-bins=number | -sizeOfBins=value]

[-lowerLimit=value] [-upperLimit=value] [-sides] [-normalize[={sum | area |

peak}]]

• files: inputFile is a file containing at least two columns of data. One column must contain
string entries that serve as “event identifiers”; for example, these might be the names of
channels that issued an alarm. The other column must contain numerical data that will be
histogrammed; for example, these might be the times at which alarms occured. The outputFile

contains one histogram of this numerical data for each unique value in of the event identifier;
the histogram contains only the data that matches that identifier.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -dataColumn=columnName— Specifies the name of the data column to be histogrammed.

– -eventIdentifier=columnName — Specifies the name of the string column that identi-
fies events.

– -overlapEvent=eventValue — Requests computation of the overlap of the histograms
of each event with the histogram of event eventValue. Useful in determining which events
always occur at the same time as event eventValue.

– -bins=number — Specifies the number of bins to use. The default is 20.

– -sizeOfBins=value — Specifies the size of bins to use. The number of bins is computed
from the range of the data.

– -lowerLimit=value — Specifies the lower limit of the histogram. By default, the lower
limit is the minimum value in the data.

– -upperLimit=value — Specifies the upper limit of the histogram. By default, the upper
limit is the maximum value in the data.

– -sides — Specifies that zero-height bins should be attached to the lower and upper
ends of the eventhistogram. Many prefer the way this looks on a graph.

– -normalize[={sum | area | peak}] — Specifies that the histogram should be nor-
malized, and how. The default is sum. sum normalization means that the sum of the
heights will be 1. area normalization means that the area under the histogram will be
1. peak normalization means that the maximum height will be 1.

• see also:

– sddscorrelate (4.22)

66

– sddshist (4.36)

– sddshist2d (4.37)

• author: M. Borland, ANL/APS.

67

4.30 sddsexpand

• description:

sddsexpand reads data pages from an SDDS file and writes a new SDDS file containing a
separate data page for every row in the input file. All column definitions from the input file
are turned into parameter definitions in the output file. In addition all parameter definitions
from the input file are copied to the output file. Each output data page contains the values
of the columns from a single row of the input file, along with the values of the parameters
from the same page. The output file contains no column or array definitions.

sddsexpand is essentially the inverse of sddscollapse (except that the column data thrown
out in collapsing a file is not recoverable).

• synopsis:

sddsexpand [inputFile] [outputFile] [-pipe[=input][,output]]

• files: inputFile is the name of an SDDS data set to be expanded. outputFile is the result.
Note that outputFile will not contain any information from any arrays that are in inputFile.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -noWarnings — Suppresses warnings about name clashes between parameters and
columns. If such a clash occurs, the parameter data is ignored.

• see also:

– sddscollapse (4.15)

– sddsbreak (4.10)

• author: M. Borland, ANL/APS.

68

4.31 sddsexpfit

• description: sddsexpfit does exponential fits to a single column of an SDDS file as a
function of another column (the independent variable). The fitting function is

E(x) = C + F ∗ eR ∗ x,

where x is the independent variable, C is the constant term, F is the factor, and R is the rate.

• examples: Fit an exponential decay to vacuum pressure versus time during a pumpdown:

sddsexpfit vacDecay.sdds -columns=Time,Pressure vacDecay.fit

Same, but give the program a hint and force it to get a better fit

sddsexpfit vacDecay.sdds -columns=Time,Pressure vacDecay.fit -clue=decays

-tolerance=1e-12

• synopsis:

sddsexpfit [-pipe=[input][,output]] [inputFile] [outputFile]

[-columns=xName,yName] [-tolerance=value] [-clue={grows | decays}]
[-guess=constant,factor,rate] [-verbosity=integer] [-fullOutput]

• files: inputFile contains the columns of data to be fit. If inputFile contains multiple pages,
each page of data is fit separately. outputFile has columns containing the independent variable
data and the corresponding values of the fit. The name of the latter column is constructed by
appending the string Fit to the name of the dependent variable. In addition, if -fullOutput
is given, outputFile includes a column with the dependent values and the residual (dependent
values minus fit values). The name of the residual column is constructed by appending the
string Residual to the name of the dependent variable. outputFile contains four parameters:
expfitConstant, expfitFactor, expfitRate, and expfitRmsResidual. The first three pa-
rameters are respectively C, F, and R from the above equation. The last is the rms residual
of the fit.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -columns=xName,yName — Specifies the names of the independent and dependent
columns of data.

– -tolerance=value — Specifies how close sddsexpfit will attempt to come to the op-
timum fit, in terms of the mean squared residual. The default is 10−8.

– -clue={grows | decays} — Helps sddsexpfit decide whether the data is a decaying or
growing exponential, i.e., whether R is negative or positive, respectively. If sddsexpfit
is having trouble, this will often help.

– -guess=constant,factor,rate — Gives sddsexpfit a stating point for each of the
three fit parameters.

– -fullOutput — Specifies that outputFile will contain the original dependent variable
data and the fit residuals, in addition to the independent variable data and the fit values.

69

– -verbosity=integer— Specifies that informational printouts are desired during fitting.
A larger integer produces more output.

• see also:

– Data for Examples (see 3.3)

– sddspfit (4.49)

– sddsgfit (4.35)

– sddsoutlier (4.47)

• author: M. Borland, ANL/APS.

70

4.32 sddsfdfilter

• description:

• synopsis:

sddsfdfilter [-pipe[=input][,output]] [inputfile] [outputfile]

[-columns=indep-variable[,depen-quantity][,depen-quantity...]]

[-exclude=depen-quantity[,depen-quantity]]

[-clipFrequencies=[high=number][,low=number]]

[-threshold=level=value[,fractional][,start=freq][,end=freq]]

[-highpass=start=freq,end=freq] [-lowpass=start=freq,end=freq]

[-notch=center=center,flatWidth=width1,fullWidth=width2]

[-bandpass=center=center,flatWidth=width1,fullWidth=width2]

[-filterFile=filename=filename,frequency=columnName,

{real=columnName,imaginary=columnName | magnitude=columnName}]
[-cascade] [-newColumns] [-differenceColumns]

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns=indepVariable[,depenQuantity][,depenQuantity...] — Gives the
name of the independent variable (typically the time variable) with respect to which
filtering is done. If no depenQuantity qualifiers are given, then all numerical columns are
filtered; otherwise, only the named columns are filtered.

– -exclude=depenQuantity[,depenQuantity] — Specifies the names of columns to ex-
clude from time filtering, altering whatever selections are made by the -columns option.

– -clipFrequencies[=low=frequency][,high=frequency] — Specifies clipping fre-
quencies below a given frequency (low qualifier) and/or above a given frequency (high
qualifier). Any frequencies in the signals that are clipped are set to zero.

– -threshold=level=value[,fractional][,start=freq][,end=freq]] — Specifies a
threshold level below which Fourier components are set to zero. If the fractional

qualifier is given, the level is interpreted as a fraction of the largest component. The
start and end qualifiers allow restricting the frequency range over which the threshold
is applied.

– -highpass=start=freq,end=freq— Specifies a highpass filter. Frequency components
below the start value are set to zero, while those above the end value are unaffected.
Those in between are multiplied by a value that varies linearly from 0 to 1.

– -lowpass=start=freq,end=freq — Specifies a lowpass filter. Frequency components
above the end value are set to zero, while those below the start value are unaffected.
Those in between are multiplied by a value that varies linearly from 0 to 1.

– -notch=center=center,flatWidth=width1,fullWidth=width2 — Specifies a notch
filter centered on a given frequency, attenuating completely within a band width1 wide.
Frequencies outside a band width2 are unattenuated. Frequencies between the two widths
are attenuated by values varying linearing from 0 to 1 as the frequency becomes more
distant from the center frequency.

71

– -bandpass=center=center,flatWidth=width1,fullWidth=width2 — Specifies a
bandpass filter centered on a given frequency, passing a band width1 wide without at-
tenuation. Frequencies outside a band width2 are completely attenuated. Frequencies
between the two widths are attenuated by values varying linearing from 1 to 0 as the
frequency becomes more distant from the center frequency.

– -filterFile=filename=filename,frequency=columnName,

{real=columnName,imaginary=columnName | magnitude=columnName} — Specifies
a filter explicitly as a function of frequency, using either a single value (simple attenua-
tion) or a real and imaginary value. The name of the column containing frequency values
must be given with the frequency qualifier. In addition, one must either give the name
of the column containing the magnitude (attenuation factor) or else both the names
of the columns containing the real and imaginary components. The function thus
specified is interpolated linearly to obtain values at any required frequencies. Fourier
components at frequency beyond the range in the file are unaffected.

– -cascade — By default, if several filters are specified using the above options, their
output is added. When the cascade option is given, a new sequence is started, with
the original signal as input. The output from all cascades is summed to obtain the final
result.

– -newColumns— Specifies that new columns be created in the output file to hold the result
of the filtering. By default, the filtered data is placed in columns with the same names as
those in the input file. Using this option, both the filtered and unfiltered data will appear
in the output file. The filtered data will have names of the form columnNameFiltered,
where columnName is the name of the source column in the input file.

– -differenceColumns — Specifies that new columns be created in the output file that
contain the difference between each original column and the corresponding filtered col-
umn. The new columns have names of the form columnNameDifference, where column-

Name is the name of the source column in the input file.

• see also:

– sddsdigfilter (4.25)

– sddssmooth (4.63)

• author: M. Borland, ANL/APS.

72

4.33 sddsfft

• description: sddsfft takes Fast Fourier Transforms of real data in columns. It will trans-
form any number of columns simultaneously as a function of a single independent variable.
Strictly speaking, the independent variable values should be equispaced; if they are not,
sddsfft uses the average spacing. The number of data points need not be a power of two.
Output of the magnitude only is the default, but phase and complex values are available.

• examples: Take the FFT of time series samples of PAR x beam-position-monitor readouts:

sddsfft par.bpm par.fft -column=Time,’P?P?x’

• synopsis:

sddsfft [-pipe=[input][,output]] [inputFile] [outputFile]

-columns=indepVariable[,depenQuantityList] [-padWithZeroes | -truncate]

[-sparse=integer] [-window[={hanning | welch | parzen}]] [-normalize]

[-suppressAverage] [-fullOutput] [-psdOutput]

• files: inputFile contains the data to be FFT’d. One column from this file must be chosen
as the independent variable. By default, all other columns are taken as dependent variables.
If inputFile contains multiple pages, each is treated separately and is delivered to a separate
page of outputFile.

outputFile contains a column f for the frequency, along with one or more columns for each
independent variable. By default, outputFile has one column named FFTindepName contain-
ing the magnitude of the FFT for each independent variable. If -fullOutput is specified,
outputFile contains additional columns for, respectively, the phase (or argument), real part,
and imaginary part of the FFT: ArgindepName, RealindepName, and ImagindepName. If
power-spectral-density output is requested, then a column PSDindepName is also created.

outputFile also contains two parameters, fftFrequencies and fftFrequencySpacing, giving
the number of frequencies and the frequency spacing, respectively.

• switches:

– pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns=indepVariable[,depenQuantityList] — Specifies the name of the inde-
pendent variable column. Optionally, specifies a list of comma-separated, optionally
wildcard-containing names of dependent quantities to be FFT’d as a function of the
independent variable. By default, all numerical columns except the independent column
are FFT’d.

– -exclude=depenQuantity,... — Specifies optionally wildcarded names of columns to
exclude from analysis.

– -padWithZeros — Specifies that the independent data should be padded with zeros to
make the number of points equal to the nearest power of two. In some cases, this will
result in significantly greater speed.

– -truncate — Specifies that the data should be truncated so that the number of points
is the largest product of primes from 2 to 19 not greater than the original number of
points. In some cases, this will result in significantly greater speed.

73

– sparse=integer — Specifies that the data should be uniformly sampled at the given
integer interval. While this reduces frequency span of the FFT, it may result in greater
speed.

– window[={hanning | welch | parzen} — Specifies that data windowing should be
performed prior to taking FFT’s, and optionally specifies the type of window. The
default is hanning. Usually used to improve visibility of small features or accuracy of
amplitudes for data that is not periodic in the total sampling time or a submultiple
thereof.

– normalize — Specifies that FFT’s will be normalized to give a maximum magnitude of
1.

– suppressAverage — Specifies that the average value of the data will be subtracted from
every point prior to taking the FFT. This may improve accuracy and visibility of small
components.

– fullOutput — Specifies that in addition to the magnitude, the phase, real part, and
imaginary part of each FFT will be included in the output.

– psdOutput — Specifies that in in addition to ordinary FFT data, the power-spectral-
densities will also be included in the output. The units of the PSD are of the form
x2/t, where x (t) represents the units of the independent (dependent) variable. These
units are conventional with PSDs, which are normalized to the frequency spacing so that
integrating the PSD gives the signal power.

• see also:

– Data for Examples (see 3.3)

– sddsdigfilter (4.25)

– sddsnaff (4.45)

• author: M. Borland, ANL/APS.

74

4.34 sddsgenericfit

• description: sddsgenericfit does fits to an arbitrary functional form specified by the user.

• examples: Fit a gaussian to a beam profile to get the rms beam size. In this example, the
file beamProfile.sdds is assumed to contain data to be fit in columns x and Intensity.

sddsgenericfit beamProfile.sdds beamProfile.gfit -column=x,Intensity

‘‘-equation=height x center - sqr 2 / sigma sqr / exp / baseline + y -

sqr’’

-variable=name=height,start=1,lower=0,upper=10,step=0.1

-variable=name=center,start=0,lower=-10,upper=10,step=0.1

-variable=name=sigma,start=1,lower=0.1,upper=10,step=0.1

-variable=name=baseline,start=0,lower=-1,upper=1,step=0.1

• synopsis:

sddsgenericfit [-pipe=[input][,output]] [inputfile] [outputfile]

-columns=x-name,y-name[,ySigma=sy-name] -equation=string[,algebraic]

[-target=value] [-tolerance=value]

[-simplex=[restarts=integer][,cycles=integer,][evaluations=integer]]

-variable=name=name,lowerLimit=value,upperLimit=value,stepsize=value,startingValue=value[,units=string][,heat=value]

[-variable=...] [-verbosity=integer] [-startFromPrevious]

• files: inputFile contains the columns of data to be fit. If inputFile contains multiple pages,
each page of data is fit separately. outputFile has columns containing the independent vari-
able data and the corresponding values of the fit. The name of the column is constructed
by appending the string Fit to the name of the dependent variable. The name of the resid-
ual column is constructed by appending the string Residual to the name of the dependent
variable. outputFile also contains parameters giving the values of the fit parameters.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -columns=x-name,y-name[,ySigma=name] — Specifies the names of the independent
and dependent columns of data, and optionally the name of the column containing the
errors in the dependent column.

– -equation=string[,algebraic] — Specifies the penalty function for performing the
fit. If you are fitting the form y = f(x), then the penalty function has the form (y −
f(x))2.

– -tolerance=value — Specifies the minimum change in the (weighted) rms residual that
is considered significant enough to justify continuing optimization.

– -simplex=[restarts=nRestarts][,cycles=nCycles,][evaluations=nEvals] —
Specifies parameters of the simplex optimization used to perform the fit. Each start
or restart allows nCycles cycles with up to nEvals evaluations of the function. Defaults
are 10 restarts, 10 cycles, and 5000 evaluations.

75

–

-variablename=name,lowerLimit=value,upperLimit=value,stepsize=value,startingValue=value[,units=string][,heat=value]

— Specifies a parameter of the fitting fnuction. If the heat qualifier is given, then prior
to each restart the code “heats” the values by adding random numbers to the result of
the last iteration. This can help avoid getting stuck in a local minimum. You must give
one variable option for every parameter of the fit.

– -startFromPrevious — Meaningful for multipage input files only. If given, then the
optimization for each page starts from the parameter values from the fit to the pre-
vious page. By default, fitting for each page starts from the values specified on the
commandline.

– -verbosity=integer— Specifies that informational printouts are desired during fitting.
A larger integer produces more output.

• see also:

– sddsexpfit (4.31)

– sddsgfit (4.35)

– sddsoutlier (4.47)

– sddspfit (4.49)

• author: M. Borland, ANL/APS.

76

4.35 sddsgfit

• description: sddsgfit does gaussian fits to a single column of an SDDS file as a function
of another column (the independent variable). The fitting function is

G(x) = B + H ∗ e
−(x − µ)2

2σ2
,

where x is the independent variable, B is the baseline, H is the height, µ is the mean, and σ
is the width.

• examples: Fit a gaussian to a beam profile to get the rms beam size:

sddsgfit beamProfile.sdds beamProfile.gfit -column=x,Intensity

• synopsis:

sddsgfit [-pipe=[input][,output]] [inputFile] [outputFile]

-columns=x-name,y-name[,sy-name] [-fitRange=lower,upper] [-fullOutput]

[-guesses=[baseline=value][,mean=value][,height=value][,sigma=value]]

[-fixValue=[baseline=value][,mean=value][,height=value][,sigma=value]]

[-stepSize=factor] [-tolerance=value]

[-limits=[evaluations=number][,passes=number] [-verbosity=integer]

• files: inputFile contains the columns of data to be fit. If inputFile contains multiple pages,
each page of data is fit separately. outputFile has columns containing the independent variable
data and the corresponding values of the fit. The name of the latter column is constructed by
appending the string Fit to the name of the dependent variable. In addition, if -fullOutput
is given, it includes a column with the dependent values and the residual (dependent val-
ues minus fit values). The name of the residual column is constructed by appending the
string Residual to the name of the dependent variable. outputFile contains five parameters:
gfitBaseline, gfitHeight, gfitMean, gfitSigma, and gfitRmsResidual. The first four
parameters are respectively B, H, µ, and σ from the equation above. The last is the rms
residual of the fit.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -columns=x-name,y-name — Specifies the names of the independent and dependent
columns of data.

– -fitRange=lower,upper — Specifies the range of independent variable values to use in
the fit.

– -guesses=[baseline=value][,mean=value][,height=value][,sigma=value] —
Gives sddsgfit a starting point for one or more parameters.

– -fixValue=[baseline=value][,mean=value][,height=value][,sigma=value] —
Gives sddsgfit a fixed value for one or more parameters. If given, then sddsgfit

will not attempt to fit the parameters in question.

– -stepSize=factor — Specifies the starting stepsize for optimization as a fraction of the
starting values. The default is 0.01.

77

– -tolerance=value— Specifies how close sddsgfitwill attempt to come to the optimum
fit, in terms of the mean squared residual. The default is 10−8.

– -limits=[evaluations=number][,passes=number — Specifies limits on how many fit
function evaluations and how many minimization passes will be done in the fitting. The
defaults are 5000 and 100, respectively. If the fit is not converging, try increasing one or
both of these. If the number of evaluations is too small, you may get warning messages
about optimization failures.

– -fullOutput — Specifies that outputFile will contain the original dependent variable
data and the fit residuals, in addition to the independent variable data and the fit values.

– -verbosity=integer— Specifies that informational printouts are desired during fitting.
A larger integer produces more output.

• see also:

– sddspfit (4.49)

– sddsexpfit (4.31)

– sddsoutlier (4.47)

• author: M. Borland, ANL/APS.

78

4.36 sddshist

• description: sddshist does weighted and unweighted one-dimensional histograms of column
data from an SDDS file. It also does limited statistical analysis of data, and basic filtering of
data.

• examples: Make a 20-bin histogram of a series of PAR x beam-position-monitor readouts:

sddshist par.bpm par.bpmhis -data=P1P1x -bins=20

• synopsis:

sddshist [-pipe=[input][,output]] [inputFile] [outputFile]

-dataColumn=columnName [-bins=number | -sizeOfBins=value]

[-lowerLimit=value] [-upperLimit=value]

[-filter=columnName,lowerLimit,upperLimit] [-weightColumn=columnName]

[-sides] [-normalize[={sum | area | peak}]] [-statistics] [-verbose]

• files: inputFile is the name of an SDDS file containing data to be histogrammed, along with
optional weight data. If inputFile contains multiple data pages, each is treated separately. The
histogram or histograms are placed in outputFile, which has two columns. One column has the
same name as the histogrammed variable, and consists of equispaced values giving the centers
of the bins. The other column, named frequency, contains the histogram frequencies. Its
precise meaning is dependent on normalization modes and weighting. By default, it contains
the number of data points in the corresponding bin.

If requested, outputFile will also contain parameters giving statistics for the data being his-
togrammed. See below for details.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -dataColumn=columnName— Specifies the name of the data column to be histogrammed.

– -bins=number — Specifies the number of bins to use. The default is 20.

– -sizeOfBins=value — Specifies the size of bins to use. The number of bins is computed
from the range of the data.

– -lowerLimit=value — Specifies the lower limit of the histogram. By default, the lower
limit is the minimum value in the data.

– -upperLimit=value — Specifies the upper limit of the histogram. By default, the upper
limit is the maximum value in the data.

– -filter=columnName,lowerLimit,upperLimit — Specifies the name of a column by
which to filter the input rows. Rows for which the named data is outside the specified
interval are discarded. Alternatively, one can use sddsprocess (see 4.52) to winnow data
and pipe it into sddshist.

– -weightColumn=columnName — Specifies the name of a column by which to weight the
histogram. This means that data points with a higher corresponding weight value are
counted proportionally more times in the histogram.

79

– -sides — Specifies that zero-height bins should be attached to the lower and upper
ends of the histogram. Many prefer the way this looks on a graph.

– -normalize[={sum | area | peak}] — Specifies that the histogram should be nor-
malized, and how. The default is sum. sum normalization means that the sum of the
heights will be 1. area normalization means that the area under the histogram will be
1. peak normalization means that the maximum height will be 1.

– -statistics — Specifies that statistics should be computed for the data and placed in
outputFile. These presently include arithmetic mean, rms, and standard deviation. The
parameters are named by appending the strings Mean, RMS, and StDev to the name of
the data column. If -weigthColumn is given, the statistics are weighted.

• see also:

– Data for Examples (see 3.3)

– sddshist2d (4.37)

– sddsprocess (4.52)

• author: M. Borland, ANL/APS.

80

4.37 sddshist2d

• description:

sddshist2d makes two-dimensional histograms of data, producing output that is suitable
for plotting with sddscontour. The two-dimensional histogram may include data from two
columns, or may show the histograms of a single column versus page number.

• examples: Make a two-dimensional histogram of two PAR bpm readouts, then plot the
result:

sddshist2d par.bpm par.bpm.h2d -column=P1P1x,P1P2x -xparam=50 -yparam=50

sddscontour -shade=32 par.bpm.h2d -quantity=frequency

• synopsis:

sddshist2d [-pipe[=input][,output]] [inputfile] [outputfile]

-columns={xName,yName | yName} [-weights=columnName[,average]]

[-xParameters=bins[,lower,upper]] [-yParameters=bins[,lower,upper]]

[-outputName=string] [-sameScale] [-combine] [-normalize[=sum]]

[-smooth[=passes]] [-verbose]

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns={xName,yName | yName} — Specifies the data from the input to histogram.
If both xName and yName are given, then sddshist2d does a two-dimensional histogram
of the values in the named columns. If only yName is given, then sddshist2d does a
series of one-dimensional histograms of the named column, one for each data pages; these
histograms are then assembled as a two-dimensional histogram with one axis being the
page number.

– -weights=columnName[,average]— Specifies the name of a column of data with which
to proportionally weight the count value of points in the histogram. If the average

qualifier is given, then each bin value is normalized to contain the average value of the
weight for all points in the bin.

– -xParameters=bins[,lower,upper] — Specifies the number of bins and optionally the
histogrammed region for the x values. Ignored if only yName is given. By default, 21
bins are used encompassing all of the data points.

– -yParameters=bins[,lower,upper] — Specifies the number of bins and optionally the
histogrammed region for the y values. By default, 21 bins are used encompassing all of
the data points.

– -outputName=string — Specifies the name of the histogram data. The default is
frequency.

– -sameScale — Specifies that for multipage input files, the histogram region should be
the same for all pages. The region is set to encompass all data points from all pages.

– -combine — Specifies that for multipage input files, the data from all pages should be
placed in a single histogram.

81

– -normalize[=sum] — Specifies normalization of the histogram. If the sum qualifier is
not given, the histogram is normalized to unit amplitude; otherwise, it is normalized so
that the sum of all frequencies is unity.

– -smooth[=passes] — Specifies smoothing by nearest-neighbor-averaging. If passes is
omitted, only one pass is performed.

– -verbose — Requests informational output during processing.

• see also:

– sddshist (4.36)

– sddscontour (4.19)

– sddscongen (4.18)

• author: M. Borland, ANL/APS.

82

4.38 sddsinteg

• description: sddsinteg integrates one or more columns of data as a function of a common
column. The program will perform error propagation if error bars are provided in the data
set.

• examples: Find the integral
∫

ηxds for APS lattices

sddsinteg APS.twi APS.integ -integrate=etax -versus=s

• synopsis:

sddsinteg [-pipe=[input][,output]] [input] [output]

-integrate=columnName[,sigmaName] ... -versus=columnName[,sigmaName]

[-mainTemplates=item=string[,...]] [-errorTemplates=item=string[,...]]

[-method=methodName] [-printFinal[=bare][,stdout]]

• files: input is an SDDS file containing columns of data to be integrated. If it contains multiple
data pages, each is treated separately. The independent quantity along with the requested
integrals is placed in columns in output. By default, the integral column name is constructed
by appending “Integ” to the variable column name. If applicable, the column name for the
integral error is constructed by appending “IntegSigma”.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -integrate=columnName[,sigmaName] — Specifies the name of a column to integrate,
and optionally the name of the column containing the error in the integrand. May be
given any number of times.

– -versus=columnName[,sigmaName] — Specifies the name of the independent variable
column, and optinally the name of the column containing its error.

– -mainTemplates=item=string[,...] — Specifies template strings for names and def-
inition entries for the integral columns in the output file. item may be one of name,
description, symbol. The symbols “%x” and “%y” are used to represent the indepen-
dent variable name and the name of the integrand, respectively.

– -errorTemplates=item=string[,...] — Specifies template strings for names and
definition entries for the integral error columns in the output file. item may be one
of name, description, the independent variable name and the name of the integrand,
respectively.

– -method=methodName — Specifies the integration method. At present, only trapizoidal
rule integration is support, so this option is ignored.

– -printFinal[=bare][,stdout] — Specifies that the final value of each integral should
be printed out. By default, the printout goes to stderr and includes the name of the
integral. If bare is given, the names are omitted. If stdout is given, the printout goes
to stdout.

• see also:

– sddsderiv (4.23)

• author: M. Borland, ANL/APS.

83

4.39 sddsinterp

• description: sddsinterp does polynomial interpolation of one or more columns of data as
a function of a common independent variable. Interpolation may be done at specified points,
at a sequence of points, or at points given in another SDDS file.

• examples: Do second-order polynomial interpolation of Twiss parameters at 250 points to
get smoother-looking data:

sddsinterp APS.twi APS.interp -column=s,betax,betay -order=2 -sequence=250

• synopsis:

sddsinterp [-pipe[=input][,output]] [inputFile] [outputFile]

[-columns=independentQuantity,name[,name...]]

{ -atValues=valuesList |

-fillIn |

-sequence=points[,start,end] |

-fileValues=valuesFile[,column=columnName][,parallelPages] }
[-order=number] [-printOut[=bare][,stdout]]

[-belowRange={value=value | skip | saturate | extrapolate | wrap}[,{abort |

warn}]
[-aboveRange={value=value | skip | saturate | extrapolate | wrap}[,{abort |

warn}]

• files: inputFile is an SDDS file containing columns of data to be interpolated. One column
is selected as the independent variable. Any number of others may be specified as dependent
variables. If inputFile contains multiple data pages, each is treated separately. outputFile

contains the independent variable values at which interpolation was performed, in a column
with the same name as the independent variable in inputFile. Similarly, the interpolated
values are placed in outputFile under the same names as the independent columns from
inputFile.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns=independentQuantity,name[,name...] — Specifies the names of the inde-
pendent and dependent variable columns.

– -atValues=valuesList — Specifies a comma-separated list of values at which interpo-
lation is done.

– -sequence=points[,start,end] — Specifies a sequence of equispaced points at which
interpolation is done. If start and end are given, they specify the range of these points.
If they are not given, the range is the range of the independent data.

– -fillIn—Somewhat like -sequence=points, except the number of points is chosen
so that the spacing of the interpolation points is equal to the minimum point spacing
in the file. In other words, if you have a data file with non- equidistant points, this
option interpolates to give you equidistant points with the same minimum spacing as
the original data. This tends to fill in the space between widely-spaced points, hence
the name.

84

– -fileValues=valuesFile[,column=columnName][,parallelPages] — Specifies a set
of values at which interpolation is to be done. In this case, the values are extracted
from a column (columnName) of an SDDS file (valuesFile). If parallelPages is given,
then successive pages of inputFile are interpolated at points given by successive pages of
valuesFile. Otherwise, each page of inputFile is interpolated at the values in all pages of
valuesFile; this can take quite some time if both files have many pages with many rows.

– -order=number — The order of the polynomials to use for interpolation. The default is
1, indicating linear interpolation.

– -printOut[=bare][,stdout] — Specifies that interpolated values should be printed
to stderr. By default, the printout contains text identifying the quantities; this may
be suppressed by specifying bare. Output may be directed to the standard output by
specifying stdout.

– -belowRange={value=value | skip | saturate | extrapolate | wrap}[,{
abort | warn}, -aboveRange={value=value | skip | saturate | extrapolate |

wrap}[,{ abort | warn} — These options specify the behavior in the event that an
interpolation point is, respectively, below or above the range of the independent data.
If such an out-of-range point occurs, the default behavior is to assign the value at the
nearest endpoint of the data; this is identical to specifying saturate. One may specify
use of a specific value with value=value. skip specifies that offending points should
be discarded. extrapolate specifies extrapolation beyond the limits of the data. wrap

specifies that the data should be treated as periodic. abort specifies that the program
should terminate. warn requests warnings for out-of-bounds points.

• see also:

– sddspfit (see 4.49)

– Data for Examples (see 3.3)

• author: M. Borland, ANL/APS.

85

4.40 sddsmakedataset

• description: sddsmakedataset writes the input data into a file or pipe in SDDS format.
It can be used to make add SDDS file consisting of a small amount of data from the script.
It is more convenient than “sdds save”.

• examples:

sddsmakedataset mydata.sdds -parameter=pi,type=double -data=3.1415926

-parameter=UserName,type=string -data=somebody

-column=index,type=short -data=1,2,3,4,5,6,7,8,9,10

-column=primeNumbers,type=long -data=1,2,3,5,7,11,13,17,19,23

-column=lettersOfAlphabet,type=character -data=a,b,c,d,e,f,g,h,i,j -ascii

An ascii file mydata.sdds is created by this command. The printout of mydata.sdds is as
following: (used sddsprintout to get the prinout).

Printout for SDDS file mydata.sdds

pi = 3.141593e+00 UserName = somebody

index primeNumbers lettersOfAlphabet

--

1 1 a

2 2 b

3 3 c

4 5 d

5 7 e

6 11 f

7 13 g

8 17 h

9 19 i

10 23 j

• synopsis:

sddsmakedataset [<oututFile> | -pipe=out]

[-defaultType=double|float|long|short|string|character]

[-parameter=<name>[,type=<string>][,units=<string>][,symbol=<string>][,description=<string>]]

[-data=<value>] -parameter=.... -data=...

[-column=<name>[,type=<string>][,units=<string>][,symbol=<string>][,description=<string>]]

[-data=<listOfCommaSeparatedValue>] -column=... -data=... [-noWarnings]

[-description=<string>] [-contents=<string>] [-mode=<string>]

• switches:

– outputFile — SDDS output file for writing the data to.

– -pipe=out — output the data in SDDS format to the pipe instead of to a file.

86

– -defaultType — specify the default data type for paparemeters and columns if not
specified in the parameter or column definition.

– -parameter — specify the parameter name, data type, units, symbol and description.

– -column — specify the column name, data type, units, symbol and/or description.

– -noWarnings — do not print out warning messages.

– -ascii — output file in ascii mode, the default is binary.

– -description — description of output file.

– -contents — contents of the description.

• author: H. Shang ANL

87

4.41 sddsmpfit

• description: sddsmpfit does ordinary and Chebyshev polynomial fits to column data, in-
cluding error analysis. It will do fits to with specified number of terms, with specific terms
only, and with specific symmetry only. It will also eliminate spurious terms. The options for
sddsmpfit are very similar to those for sddspfit.

• synopsis:

sddsmpfit [-pipe=[input][,output]] [inputFile] [outputFile]

-independent=xName [-sigmaIndependent=xSigmaName]

-dependent=yName[,yName...] [-sigmaDependent=templateString] -terms=number

[-symmetry={none | odd | even}] | -orders=number[,number...]

[-reviseOrders[=threshold=chiValue][,verbose]] [-chebyshev[=convert]]

[-xOffset=value] [-xFactor=value] [-sigmas=value,{absolute | fractional}]
[-modifySigmas] [-generateSigmas[=keepLargest | keepSmallest]]

[-sparse=interval] [-range=lower,upper] [-normalize[=termNumber]] [-verbose]

[-evaluate=filename[,begin=value][,end=value][,number=integer]]

[-fitLabelFormat=sprintfString] [-infoFile=filename]

• files: inputFile is an SDDS file containing columns of data to be fit. If it contains multiple
pages, they are processed separately. outputFile is an SDDS file containing one page for each
page of inputFile. It contains columns of the independent and dependent variable data, plus
columns for error bars (“sigmas”) as appropriate. The values of the fit and of the residuals are
in a columns named yNameFit and yNameResidual. In addition, various parameters having
names beginning with yName are created that give reduced chi-squared, slope, intercept, and
so on.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -evaluate=filename[,begin=value][,end=value][,number=integer] — Specifies
creation of an SDDS file called filename containing points from evaluation of the fit.
The fit is normally evaluated over the range of the input data; this may be changed
using the begin and end qualifiers. Normally, the number of points at which the fit
is evaluated is the number of points in the input data; this may be changed using the
number qualifier.

– infoFile=filename — Specifies creation of an SDDS file containing results of the fits
in columns. A column called yNameCoefficient is created for each column that is fitted.

– By default, an ordinary polynomial fit is done using a constant and linear term. Control
of what fit terms are used is provided by the following switches:

∗ -terms=number — Specifies the number of terms to be used in fitting. 2 terms is
linear fit, 3 is quadratic, etc.

∗ -symmetry={none | odd | even} — When used with -terms, allows specifying
the symmetry of the N terms used. none is the default. odd implies using linear,
cubic, etc., while even implies using constant, quadratic, etc.

∗ -orders=number[,number...] — Specifies the polynomial orders to be used in
fitting. The default is equivalent to -orders=0,1.

88

∗ -reviseOrders[=threshold=value][,verbose] — Asks for adaptive fitting to be
performed on the first data page to determine what orders to use. Any term that
does not improve the reduced chi-squared by value is discarded. Similar to but much
less capable than the adaptive fitting feature of sddspfit.

∗ [-chebyshev[=convert]] — Asks that Chebyshev T polynomials be used in fit-
ting. If convert is given, the output contains the coeffients for the equivalent
ordinary polynomials.

– -xOffset=value, -xFactor=value — Specify offseting and scaling of the independent
data prior to fitting. The transformation is x → (x − Offset)/Factor. This feature can be
used to make a fit about a point other than x=0, or to scale the data to make high-order
fits more accurate.

– sddsmpfit will compute error bars (“sigmas”) for fit coefficients if it has knowledge of
the sigmas for the data points. These can be supplied using the -columns switch, or
generated internally in several ways:

∗ -sigmas=value{absolute | fractional} — Specifies that independent-variable
errors be generated using a specified value for all points, or a specified fraction for
all points.

∗ -modifySigmas— Specifies that independent-variable sigmas be modified to include
the effect of uncertainty in the dependent variable values. If this option is not given,
any x sigmas specified are ignored.

∗ -generateSigmas[={keepLargest |

keepSmallest}] — Specifies that independent-variable errors be generated from
the variance of an initial equal-weights fit. If errors are already given (via -column),
one may request that for every point sddsmpfit retain the larger or smaller of the
sigma in the data and the one given by the variance.

– -sparse=interval — Specifies sparsing of the input data prior to fitting. This can
greatly speed computations when the number of data points is large.

– -range=lower,upper — Specifies the range of independent variable over which to do
fitting.

– -normalize[=termNumber] — Specifies that coefficients be normalized so that the co-
efficient for the indicated order is unity. By default, the 0-order term (i.e., the constant
term) is normalized to unity.

– -verbose — Specifies that the results of the fit be printed to the standard error output.

– -fitLabelFormat=sprintfString — Specifies the format to use for printing numbers
in the fit label. The default is “%g”.

• see also:

– Data for Examples (see 3.3)

– sddspfit (4.49)

– sddsoutlier (4.47)

• author: M. Borland, ANL/APS.

89

4.42 sddsmultihist

• description: sddsmultihist does one-dimensional histograms of multiple columns of data
from an SDDS file. All columns are histogrammed on the same interval and with the same
number of bins. It is similar to sddshist, except that the latter program only histograms a
single column at a time. Unlike sddshist, sddsmultihist does not presently do statistical
analyses or filtering.

• examples: Make 20-bin histogram of a group of PAR x beam-position-monitor readouts:

sddshist par.bpm par.bpmhis -column=P?P?x -bins=20 -abscissa=xReadout

• synopsis:

sddsmultihist [-pipe=[input][,output]] [inputFile] [outputFile]

-columns=columnName[,columnName...] -abscissa=newName [-separate]

[-exclude=columnName[,columnName...]] [-bins=number | -sizeOfBins=value]

[-lowerLimit=value] [-upperLimit=value] [-sides]

• files: inputFile is the name of an SDDS file containing data to be histogrammed. If inputFile

contains multiple data pages, each is treated separately. The histograms are placed in out-

putFile, which has one column of histogram frequencies for each histogrammed input column,
plus a column giving the abscissa values for the frequency distributions. The former columns
have names of the form columnNameFrequency, containing the number of points in each bin.
The latter column has a name given by the user.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns=columnName[,columnName...] — Specifies the names of the data columns
to be histogrammed. The columnName items may contain wildcards.

– -separate — Specifies that a separate abscissa shall be created for each histogrammed
column. If -abscissa is not given, then the abscissa names are the names of the columns
being histogrammed.

– -abscissa=newName[,newName...] — Specifies the name or names of the abscissa
columns for the histogram output. If -separate is not given, then only one name is
permitted. The units taken from the units of the columns being histogrammed.

– -exclude=columnName[,columnName...] — Specifies the names of data columns to
exclude from histogramming. The columnName items may contain wildcards.

– -bins=number — Specifies the number of bins to use. The default is 20.

– -sizeOfBins=value — Specifies the size of bins to use. The number of bins is computed
from the range of the data.

– -lowerLimit=value — Specifies the lower limit of the histogram. By default, the lower
limit is the minimum value in the data.

– -upperLimit=value — Specifies the upper limit of the histogram. By default, the upper
limit is the maximum value in the data.

– -sides — Specifies that zero-height bins should be attached to the lower and upper
ends of the histogram. Many prefer the way this looks on a graph.

90

• see also:

– Data for Examples (see 3.3)

– sddshist (4.36)

– sddshist2d (4.37)

• author: M. Borland, ANL/APS.

91

4.43 sddsmatrixmult

• description: sddsmatrixmult multiplies the matrices represented in the two input files and
puts the results in the output file.

String columns are ignored and not copied to the output file.

• examples: In an accelerator beamline a linear relationship exists between the corrector
dipole setpoints and the beam position monitor (BPM) readbacks. The matrix data in file
response is multiplied with the columns of file corrector to produce a new file containing
values of expected bpm change:

sddsmatrixmult response correctorChange bpmExpectedChange

• synopsis:

sddsmatrixmult [-pipe=[input][,output]] [file1] file2 [output] [-commute]

[-reuse] [-verbose] [-ascii]

• files: The first file (file1) is the SDDS file for left-hand matrix of product. The second file
(file2) is the SDDS file for right-hand matrix of product. The third file contains the product
matrix data.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -commute — Use file1 for right-hand matrix and file2 for left-hand matrix. Useful with
-pipe option

– -reuse — If one file runs out of data pages, then reuse the last one.

– -ascii — Produces an output in ascii mode. Default is binary.

– -verbose — Write diagnostic messages to stderr.

• author: L. Emery ANL

92

4.44 sddsmatrixop

• description: sddsmatrixop performs general matrix operations. The matrices and opera-
tions are specified on the command line and the operations will proceed in a rpn-like fashion.

String columns are ignored and not copied to the output file.

• examples: C = A B would be expressed as

sddsmatrixop A.matrix C.matrix -push=B.matrix -multiply

Here A.matrix is the input matrix of the command line. It is pushed on the ”matrix” stack.
In rpn, we always need one quantity on the stack before doing any operations, so the input file
may as well be it. The command ”push” pushes a second matrix on the stack. The command
-multiply does the multiplication of A.matrix and B.matrix. The matrix at the top of the
stack will go in the output file C.matrix.

A more complicated command would be

Y = (1 + (A + B)C)−1

sddsmatrixop A.matrix Y.matrix -push=B.matrix -add -push=C.matrix -mult

-identity -add -invert

where the -identity command pushes an identity matrix with the same dimension as the top
element on the stack. The above command will be executed as following:

command execution stack (from top to bottom)

A.matrix push A into stack A

-push=B.matrix push B into stack B A

-add pop matrix A,B from stack temp1

execute: temp1=A+B

push temp1 into stack

-push=C.matrix push C into stack C temp1

-mult pop C and temp1 from stack temp2

execute: temp2=temp1*C

push temp2 into stack

-identity pop temp2 from stack I temp2

create unit matrix(I) that

has the same

dimension as temp2

push temp2 into stack

push I into stack

-add pop I and temp2 from stack temp3

93

execute: temp3=temp2+I

push temp3 into stack

-invert pop temp3 from stack result

execute: result = temp3^(-1)

push result into stack.

at the end, the final result matrix is poped from the stack and writtend into output Y.matrix.

• synopsis:

sddsmatrixop [inputmatrix] [outputmatrix] [-pipe=[in|out]] [-verbose]

[-push=<matrix>] [-multiply]|[-add]|[-substract]|[-invert]...

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -inputmatrix — SDDS file which contains the input matrix – the first element in the
stack.

– -outputmatrix — The result matrix is written into SDDS file named by outputmatrix.

– -push=<matrix> — The matrix that is going to be pushed into stack.

– -verbose — Write diagnostic messages to stderr.

– -identity[=<number>] — push a unit matrix into stack. If ¡number¿ is provided, the
unit matrix has the dimension provided by ¡number¿, otherwise, the dimenstion of unit
matrix is the same as the top matrix in the stack.

The available operations are as following:

– -add — addition operator.

– -substract — substract operator.

– -multiply[=hadamard] — matrix multiplication operator. if =hadamard is specified,
the matrix multiplication is done element-by-element, similar to addition.

– -divide=hadamard — element-by-element division.

– -swap — swap the top two elements in the stack.

– -scalarmultiply=<value> — multiply the matrix by a constant value.

– -scalardivide=<value> — divide the matrix by a constact value.

– -transpose — matrix transpose operator.

– -invert — matrix inversion operator.

the -push and operators can be repeated many times as needed.

• author: H. Shang ANL

94

4.45 sddsnaff

• description: sddsnaff is an implementation of Laskar’s Numerical Analysis of Fundamental
Frequencies (NAFF) algorithm. This algorithm provides a way of determining the frequency
components of a signal that is more accurate than Fast Fourier Transforms (FFT). FFTs are
used as part of the analysis, so if an FFT is sufficient for an application, sddsfft should be
used as it will be much faster.

The algorithm starts by removing the average value of the signal and applying a Hanning
window. Next, the signal is FFT’d and the frequency at which the maximum FFT amplitude
occurs is found. This is taken as the starting frequency for a numerical optimization of the
“overlap” between the signal and eiωt, which allows determining ω to resolution greater than
the frequency spacing of the FFT. Once ω is determined, the overlap is subtracted from the
original signal and the process is repeated, if desired.

• examples: Find the first fundamental frequency for each of the BPM signals in par.bpm.

sddsnaff par.bpm par.naff -column=Time,’P?P?x’

-terminateSearch=frequencies=1

• synopsis:

sddsnaff [inputfile] [outputfile] [-pipe=[input][,output]]

[-columns=indep-variable[,depen-quantity[,...]]]

[-exclude=depen-quantity[,...]]

[-terminateSearch=changeLimit=fraction[,maxFrequencies=number] |

frequencies=number]

[-iterateFrequency=[cycleLimit=number][,accuracyLimit=fraction]] [-truncate]

[-noWarnings]

• files:

inputFile contains the data to be NAFF’d. One column from this file must be chosen as the
independent variable. If inputFile contains multiple pages, each is treated separately and is
delivered to a separate page of outputFile.

outputFile contains two columns for each selected column in inputFile. These columns have
names like origColumnFrequency and origColumnAmplitude, giving the frequency and am-
plitude for origColumn.

• switches:

– pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns=indepVariable[,depenQuantityList] — Specifies the name of the inde-
pendent variable column. Optionally, specifies a list of comma-separated, optionally
wildcard-containing names of dependent quantities to be NAFF’d as a function of the
independent variable. By default, all numerical columns except the independent column
are NAFF’d.

– -exclude=depenQuantity,... — Specifies optionally wildcarded names of columns to
exclude from analysis.

95

– -terminateSearch={changeLimit=fraction[maxFrequencies=number]
| frequencies=number} — Specifies when to stop searching for frequency compo-
nents. If changeLimit is given, then the program stops when the RMS change in the
signal is less than the specified fraction of the original RMS value of the signal. The
maximum number of frequencies that will be returned in this mode is specified with
maxFrequencies (default is 4). If frequencies is given, then the program finds the
given number of frequencies, if possible. By default, the program finds one frequency for
each signal.

– -iterateFrequency=[cycleLimit=number][,accuracyLimit=fraction] — This op-
tion controls the optimization procedure that searches for the best frequency. By de-
fault, the procedure executes 100 passes and attempts to determine the frequency to a
precision of 0.00001 of the Nyquist frequency. cycleLimit is used to change the number
of passes, while accuracyLimit is used to specify the desired precision.

– -truncate — Specifies that the data should be truncated so that the number of points
is the largest product of primes from 2 to 19 not greater than the original number of
points. In some cases, this will result in significantly greater speed, by making the FFTs
faster.

– -noWarnings — Suppresses warning messages.

• see also:

– Data for Examples (see 3.3)

– sddsfft (4.33)

• author: M. Borland, ANL/APS.

96

4.46 sddsnormalize

• description: sddsnormalize performs various normalizations of column data.

• synopsis:

sddsnormalize [inputFile] [outputFile] [-pipe[=input][,output]]

-columns=[mode=mode][,suffix=string][,exclude=wildcardString],columnName[,columnName...]

where mode is one of minimum, maximum, largest, signedLargest, or spread, referring to
the factor used for normalization (see below).

• files: inputFile is an SDDS file containing data to be processed. The outputFile argument is
optional. If it is not given, and if an output pipe is not selected, then the input file will be
replaced.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -columns=[mode=mode][,suffix=string]

[,exclude=wildcardString],columnName[,columnName...] — Any number of these
options may be given. Each specifies columns to normalize and in what mode. mode may
be one of minimum, maximum, largest, signedLargest, or spread, referring to the fac-
tor used for normalization: largest (the default) is the maximum absolute value; signed
largest is the same value, but with the sign restored; spread is the maximum minus
the minimum. Each columnName qualifier gives a possibly wildcarded string specifying
columns to normalize. exclude may be used to exclude columns from normalization
that are matched by a columnName. The suffix qualifier optionally specifies a suffix
to be appended to each column name, to create a new column for the output file; if not
given, then the original data are replaced with the normalized data.

• author: M. Borland, ANL/APS.

97

4.47 sddsoutlier

• description: sddsoutlier does outlier elimination of rows from SDDS tabular data. An
“outlier” is a data point that is statistically unlikely or else invalid.

• example: Eliminate “bad” beam-position-monitor readouts from PAR x BPM data, where
a bad readout is one that is more than three standard deviations from the mean:

sddsoutlier par.bpm par.bpm1 -columns=P?P?x -stDevLimit=3

Fit a line to readout P1P1x vs P1P2x, then eliminate points too far from the line.

sddspfit par.bpm -pipe=out -columns=P1P2x,P1P1x

| sddsoutlier -pipe=in par.2bpms -column=P1P1xResidual -stDevLimit=2

Same, but refit and redo outlier elimination based on the improved fit:

sddspfit par.bpm -pipe=out -columns=P1P2x,P1P1x

| sddsoutlier -pipe par.2bpms -column=P1P1xResidual -stDevLimit=2

| sddspfit -pipe -columns=P1P2x,P1P1x

| sddsoutlier -pipe=in par.2bpms -column=P1P1xResidual -stDevLimit=2

• synopsis:

sddsoutlier [-pipe=[input][,output]] [inputFile] [outputFile]

[-columns=listOfNames] [-excludeColumns=listOfNames] [-stDevLimit=value]

[-absLimit=value] [-absDeviationLimit=value] [-minimumLimit=value]

[-maximumLImit=value] [-chanceLimit=value] [-invert] [-verbose]

[-noWarnings] [{-markOnly | -replaceOnly={lastValue | nextValue |

interpolatedValue | value=number}}]

• files: inputFile contains column data that is to be winnowed using outlier elimination. If
inputFile contains multiple pages, the are treated separately. outputFile contains all of the
array and parameter data, but only those rows of the tabular data that pass the outlier
elimination. Warning: if outputFile is not given and -pipe=output is not specified, then
inputFile will be overwritten.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns=listOfNames — Specifies a comma-separated list of optionally wildcard con-
taining column names. Outlier analysis and elimination will be applied to the data in
each of the specified columns independently. No row that is eliminated by outlier anal-
ysis of any of these columns will appear in the output. If this option is not given, all
columns are included in the analysis.

– -excludeColumns=listOfNames — Specifies a comma-separated list of optionally wild-
card containing column names that are to be excluded from outlier analysis.

– -stDevLimit=value — Specifies the number of standard deviations by which a data
point from a column may deviate from the average for the column before being considered
an outlier.

98

– -absLimit=value — Specifies the maximum absolute value that a data point from a
column may have before being considered an outlier.

– -absDeviationLimit=value — Specifies the maximum absolute value by which a data
point from a column may deviate from the average for the column before being considered
an outlier.

– -minimumLimit=value, -minimumLimit=value— Specify minimum or maximum values
that data points may have without being considered outliers.

– -chanceLimit=value — Specifies placing a lower limit on the probability of seeing a
data point as a means of removing outliers. Gaussian statistics are used to determine the
probability that each point would be seen in sampling a gaussian distribution a given
number of times (equal to the number of points in each page). If this probability is
less than value, then the point is considered an outlier. Using a larger value results in
elimination of more points.

– -invert — Specifies that only outlier points should be kept.

– -markOnly— Specifies that instead of deleting outlier points, they should be only marked
as outliers. This is done by creating a new column (IsOutlier) in the output file that
contains a 1 (0) if the row has (no) outliers. If IsOutlier is in the input file, rows
with a value of 1 are treated as outliers and essentially ignored in processing. Hence,
successive invocations of sddsoutlier in a data-processing pipeline make use of results
from previous invocations even if -markOnly is given. Note: if -markOnly is not given,
then the presence of IsOutlier in the input file has no effect.

– -tt -replaceOnly={lastValue — nextValue — interpolatedValue — value=number} —
Specifies replacing outliers rather than removing them. lastValue (nextValue) speci-
fies replacing with the previous (next) value in the column. interpolatedValue specifies
interpolating a new value from the last and next value (with row number as the inde-
pendent quantity). value=number specifies replacing outliers with number.

– -verbose — Specifies that informational printouts should be provided.

– -noWarnings — Specifies that warnings should be suppressed.

• see also:

– Data for Examples (see 3.3)

– sddspfit (4.49)

– sddsgfit (4.35)

– sddsexpfit (4.31)

– sddscorrelate (4.22)

• author: M. Borland, ANL/APS.

99

4.48 sddspeakfind

• description:

sddspeakfind finds the locations and values of peaks in a single column of an SDDS file.
It incorporates various features to help reject spurious peaks. The column is considered a
function of the row index for the purpose of finding peaks. Hence, the data should be sorted
if necessary using sddssort prior to using this program. I.e., if the data contains columns x
and y, and one wants x values of peaks in y, then one should ensure that the rows are sorted
into increasing or decreasing x order.

It may also be helpful to smooth the data using sddssmooth in order to eliminate spurious
peaks due to noisy data.

• examples: Find peaks in a Fourier transform:

sddspeakfind data.fft data.peaks -column=FFTamplitude

Sort and smooth the data first:

sddssort data.fft -column=f,increasing -pipe=out

| sddssmooth -pipe -columns=FFTamplitude

| sddspeakfind -pipe=in data.peaks -column=FFTamplitude

• synopsis:

sddspeakfind [-pipe=[input][,output]] [inputFile] [outputFile]

-column=columnName [-fivePoints] [-threshold=value]

[-exclusionZone=fractionalInterval] [-changeThreshold=fractionalChange]

• files: inputFile contains the data to be searched for peaks. outputFile contains all of the
array and parameter data from inputFile, plus data from all rows that contain a peak in the
named column. No new data elements are created. If inputFile contains multiple pages, each
is treated separately and is delivered to a separate page of outputFile.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -column=columnName — Specifies the name of the column to search for peaks.

– -fivePoints — Specifies peak analysis using five adjacent data points, rather than the
default three. For three-point mode, a peak is any point which is larger than both of
its two nearest neighbors. For five-point mode, the candidate point’s nearest neighbors
must in turn be higher than their nearest neighbors on the side away from the candidate
point.

– -threshold=value — Specifies a minimum value that a peak value must exceed in order
to be included in the output. By default, no threshold is applied.

– -exclusionZone=fractionalInterval — Specifies elimination of smaller peaks within
a given interval around a larger peak. fractionalInterval is the width of the interval in
units of the length of the data table.

100

– -changeThreshold=fractionalChange — Specifies elimination of peaks for which the
fractional change between the peak value and the nearest neighbor points is less than
the given amount. If -fivePoints is given, the nearest neighbors in question are those
2 rows above and below the peak.

• see also:

– sddsfft (4.33)

– sddssmooth (4.63)

– sddspeakfind (4.48)

• author: M. Borland, ANL/APS.

101

4.49 sddspfit

• description: sddspfit does ordinary and Chebyshev polynomial fits to column data, in-
cluding error analysis. It will do fits to with specified number of terms, with specific terms
only, and with specific symmetry only. It will also eliminate spurious terms.

• synopsis:

sddspfit [-pipe=[input][,output]] [inputFile] [outputFile]

[-evaluate=filename[,begin=value][,end=value][,number=integer]]

-columns=xName,yName[,xSigma=name][,ySigma=name] -terms=number

[-symmetry={none | odd | even}] | -orders=number[,number...]

[-reviseOrders[=threshold=chiValue][,verbose][,complete=<chiThreshold>][,goodEnough=<chiValue>]]

[-chebyshev[=convert]] [-xOffset=value] [-xFactor=value]

[-sigmas={absolute=value | fractional=value}] [-modifySigmas]

[-generateSigmas[=keepLargest | keepSmallest]] [-sparse=interval]

[-range=lower,upper] [-normalize[=termNumber]] [-verbose]

[-fitLabelFormat=sprintfString]

• files: inputFile is an SDDS file containing columns of data to be fit. If it contains multiple
pages, they are processed separately. outputFile is an SDDS file containing one page for each
page of inputFile. It contains columns of the independent and dependent variable data, plus
columns for error bars (“sigmas”) as appropriate. The values of the fit and of the residuals are
in a columns named yNameFit and yNameResidual. outputFile also contains the following
one-dimensional arrays:

– Order: a long integer array of the polynomial orders used in the fit.

– Coefficient: a double-precision array of fit coefficients.

– CoefficientSigma: a double-precision array of fit coefficient errors. Present only if
errors are present for data.

– CoefficientUnits: a string array of fit coefficient units.

outputFile also contains the following parameters:

– Basis: a string identifying the type of polynomials use.

– ReducedChiSquared: the reduced chi-squared of the fit:

χ2ν =
χ2

ν
=

1

N − T
Σi=0N − 1

(

yi − y(xi)

σi

)

2

, where ν = N − T is the number of degrees of freedom for a fit of N points with T
terms.

– rmsResidual

– xNameOffset, xNameFactor

– FitIsValid: a character having values y and n if the page contains a valid fit or not.

– Terms: the number of terms in the fit.

– sddspfitLabel: a string containing an equation showing the fit, suitable for use with
sddsplot.

102

– Intercept, Slope, Curvature: the three lowest order coefficients for ordinary poly-
nomial fits. These are present only if orders 0, 1, and 2 respectively are requested in
fitting. If error analysis is valid, then the errors for these quantities appear as quantity-

NameSigma.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -evaluate=filename[,begin=value][,end=value][,number=integer] — Specifies
creation of an SDDS file called filename containing points from evaluation of the fit.
The fit is normally evaluated over the range of the input data; this may be changed
using the begin and end qualifiers. Normally, the number of points at which the fit
is evaluated is the number of points in the input data; this may be changed using the
number qualifier.

– -columns=xName,yName[,xSigma=name][,ySigma=name] — Specifies the names of the
columns to use for the independent and dependent data, respectively. xSigma and ySigma

can be used to specify the errors for the independent and dependent data, respectively.

– By default, an ordinary polynomial fit is done using a constant and linear term. Control
of what fit terms are used is provided by the following switches:

∗ -terms=number — Specifies the number of terms to be used in fitting. 2 terms is
linear fit, 3 is quadratic, etc.

∗ -symmetry={none | odd | even} — When used with -terms, allows specifying
the symmetry of the N terms used. none is the default. odd implies using linear,
cubic, etc., while even implies using constant, quadratic, etc.

∗ -orders=number[,number...] — Specifies the polynomial orders to be used in
fitting. The default is equivalent to -orders=0,1.

∗ -reviseOrders[=threshold=chiValue1][,verbose]

[,complete=chiThreshold][,goodEnough=chiValue2] — Specifies adaptive fit-
ting to eliminate spurious terms. When invoked, this switch causes sddspfit to
repeatedly fit the first page of data with different numbers of terms in an attempt
to find a minimal number of terms that gives an acceptable fit. This is done in up
to three stages:

1. The process starts by making a fit with all terms. Then, each term is elimi-
nated individually and a new fit is made. If the new fit has a smaller reduced
chi-squared by an amount of at least chiValue1, then the term is permanently
eliminated and the process is repeated for each remaining term. By default,
the criterion for an improvement is a change of 0.1 in the reduced chi-squared.
This step eliminates terms that result in a bad fit due to numerical problems. If
the goodEnough=chiValue2 qualifier is given, then the first fit that has reduced
chi-squared less than chiValue2 is used.

2. Next, the individual terms are tested for how well they improve reduced chi-
squared. Any term that does not improve the reduced chi-squared by at least
chiValue1 is eliminated. This stage eliminates terms that do not sufficiently
improve the fit to merit inclusion. Again, if the goodEnough=chiValue2 qualifier
is given, then the first fit that has reduced chi-squared less than chiValue2 is
used.

103

3. Finally, if complete=chiThreshold is given, then next stage involves repeating
the above procedure with the remaining terms, but instead of eliminating one
term at a time, the program tests each possible combination of terms. This can
be very time consuming, especially if the goodEnough=chiValue2 qualifier is not
given.

∗ [-chebyshev[=convert]] — Asks that Chebyshev T polynomials be used in fit-
ting. If convert is given, the output contains the coeffients for the equivalent
ordinary polynomials.

– -xOffset=value, -xFactor=value — Specify offseting and scaling of the independent
data prior to fitting. The transformation is x → (x − Offset)/Factor. This feature can be
used to make a fit about a point other than x=0, or to scale the data to make high-order
fits more accurate.

– sddspfit will compute error bars (“sigmas”) for fit coefficients if it has knowledge of
the sigmas for the data points. These can be supplied using the -columns switch, or
generated internally in several ways:

∗ -sigmas=absolute=value | fractional=value — Specifies that independent-
variable errors be generated using a specified value for all points, or a specified
fraction for all points.

∗ -modifySigmas— Specifies that independent-variable sigmas be modified to include
the effect of uncertainty in the dependent variable values. If this option is not given,
any x sigmas specified with -columns are ignored.

∗ -generateSigmas[={keepLargest |

keepSmallest}] — Specifies that independent-variable errors be generated from
the variance of an initial equal-weights fit. If errors are already given (via -column),
one may request that for every point sddspfit retain the larger or smaller of the
sigma in the data and the one given by the variance.

– -sparse=interval — Specifies sparsing of the input data prior to fitting. This can
greatly speed computations when the number of data points is large.

– -range=lower,upper — Specifies the range of independent variable over which to do
fitting.

– -normalize[=termNumber] — Specifies that coefficients be normalized so that the co-
efficient for the indicated order is unity. By default, the 0-order term (i.e., the constant
term) is normalized to unity.

– -verbose — Specifies that the results of the fit be printed to the standard error output.

– -fitLabelFormat=sprintfString — Specifies the format to use for printing numbers
in the fit label. The default is “%g”.

• see also:

– Data for Examples (see 3.3)

– sddsexpfit (4.31)

– sddsgfit (4.35)

– sddsplot (4.50)

– sddsoutlier (4.47)

• author: M. Borland, ANL/APS.

104

4.50 sddsplot

• description: sddsplot is a general purpose device-independent graphics program for dis-
playing parameter and column data from SDDS files. The program is equally capable of quick-
and-dirty plots and publication quality graphics. It allows organization of large amounts of
data from multiple files into useful plots with minimal effort. It provides line, point, symbol,
impulse, error-bar, and arrow plotting, with automatic variation of color, linetype, etc. It can
do data winnowing using the data to be graphed or other data in the file. Parameters from a
file can be designated for use as plot labels, legends, or for placement on the plot in specified
locations. Data pages may be tagged and sorted by multiple criteria.

sddsplot supports various flavors of Postscript, various windows options, and numerous
graphics terminals. For X-windows, a GUI interface is generated that supports zoom/pan,
cursor readout, movie mode, and much more.

• examples: Plot the horizontal beta function for the APS design:

sddsplot -columnNames=s,betax APS0.twi

Plot the Twiss functions for the APS design, using different line types for each quantity:

sddsplot -columnNames=s,’(beta?,etax)’ APS0.twi -graph=line,vary

Plot the Twiss functions for APS lattices, one plotting page per lattice (i.e., per data page),
with different linetypes and a legend:

sddsplot -columnNames=s,’(beta?,etax)’ APS.twi -graphic=line,vary -legend

-split=page -separate=page

Plot the Twiss functions for APS lattices, one plotting page per function, with each data page
shown with a different line type:

sddsplot -columnNames=s,’(beta?,etax)’ APS.twi -graphic=line,vary

-split=page -groupby=nameIndex -separate=nameIndex

Plot the Twiss functions for the APS design, using a common scale for the beta functions
and another for eta:

sddsplot -graphic=line,vary APS0.twi -columnNames=s,beta?

-yScalesGroup=id=beta -columnNames=s,etax -yScalesGroup=id=eta

• sddsplot concepts:

sddsplot has a very large number of options and is very flexible. In most cases, only a very
few of these options are employed. In order to make best use of sddsplot, it helps to be
familiar with certain concepts.

sddsplot supports multiple “plot pages” and multiple “panels” per page. In this context, a
“plot page” is a separate sheet of paper for hardcopy devices, and the equivalent for interactive
devices. For example, when using the X-windows interface just described, separate plot pages

105

are held in memory so that the user may go back and forth between them rapidly, or run
them as a movie. A plot page may contain several nonoverlapping panels, each displaying
essentially independent graphics. Presently, sddsplot divides the plot page into an array of
plot panels, each of equal size. The default is one plot panel per plot page.

Within each plot panel, sddsplot may display data from any number of “plot requests”. A
plot request is a specification to sddsplot of what data to plot from what files, and how to
do it. A plot request must contain or indicate a list of names of columns and parameters to
display, as well as the names of one or more files from which to extract the data. The data
from plot requests are organized into plot panels and plot pages according to certain defaults
or explicit instructions. One frequent choice is to move to a new panel for each plot request.
However, one may also regroup data to display data from different plot requests together.

For each request, the names of columns and parameters are grouped to form sets of sets of data
element names. For example, -columnNames=s,(betax,betay,etax) results in formation of
three sets of pairs: (s, betax), (s, betay), and (s, etax). In a more complicated exam-
ple, the sets of dataname sets might include names of error-bar data (e.g., (x, y, ySigma))
or vector components (e.g., (x, y, Ex, Ey)). To avoid confusion, a set of datanames like
those just listed will be referred to as a “name group”. Each name group for a request is
given a sequential “name index”, which can be used as shown in the last example above.

Each panel is divided into two regions, a “plot space” (or “pspace”) and a “label space”. The
pspace is the region where data is displayed. Outside the pspace is the label space, where
labels and legends normally appear.

Any point on any plot panel can be referenced by unit coordinates that start at zero in the
lower left corner of the panel and end at unity in the upper right corner. The extent of the
pspace is given in these coordinates. By default, the region the pspace occupies in these
coordinates is [0.15, 0.90]x[0.15, 0.90]. The extent of the pspace may be changed explicitly,
or it may be altered implicitly by certain switches (e.g., to make room for legends). The data
or user’s coordinates, referred to as (x, y), are mapped onto this space, as are the “pspace
coordinates”, (p, q). The latter are [0, 1]x[0, 1] coordinates.

When sddsplot reads data in from files, it collects it into internal data sets. By default,
each of these internal data sets contains the all of the data for one name group from one
file. That is, an internal data set normally contains all of the data for a name group from an
SDDS data set. The phrase “internal data set” is used to maintain the distinction between
the SDDS data set and the representation of data from an SDDS data set within sddsplot.
Associated with each internal data set is the request number, the filename, the file number
within the request, the y dataname, the name group index within the request, the starting
page number from the file, and an optional user-specified tag value (from the commandline
or a parameter in the file). These values may be used to sort and group the data in order to
place on individual panels sets of similar data from multiple sources. An instance of this is
shown in the last example above.

• synopsis:

sddsplot [X11Switches] [commonSwitches] plotRequestSwitch fileNames

localSwitches [plotRequestSwitch fileNames localSwitches ...]

The sddsplot command line is organized into three categories. First, one may issue any of
the standard X11 switches (e.g., -geometry). Second, one may give a set of switches, indicated
by commonSwitches, that will apply to all subsequest plot requests.

106

Third, one gives a series of “plot requests”. A plot request starts with one of several switches
that give the names of data elements to be plotted. It continues with the names of one or more
files from which this data is to be extracted. In addition, one may include various switches
that apply only to current plot request. These may, for example, override any common
switches that were set prior to the first plot request. In general, any switch may be given as a
common switch (so that it applies to all plot requests unless overridden) or as a local switch.

In the examples above, only a single plot request is exhibited. There are no X11 switches
and no common switches set. The plot request is initiated by the -columnNames switch. The
-graphic and -legend switches are local switches.

• switches:

– Initiating a plot request:

∗ -columnNames=xName,yNameList[,{y1NameList | x1Name,y1NameList}] —
Specifies the names of columns to be plotted. xName may be the name of a nu-
meric or string column, which is normally plotted against the horizontal or x axis.
yNameList gives the comma-separated, optionally wildcarded names of one or more
columns of numeric data. Data for each item in yNameList will be paired with the
x data for plotting.
Some types of plotting require additional data, such as error bars or vector com-
ponents. These are specified with the x1Name and y1NameList. Each item in
y1NameList is paired with the corresponding item in yNameList; the lists must
have the same length. The interpretation of the additional data is specified with
the -graphic=error or -arrow switches. For error bar plotting, one may give error
bars for both x and y by giving x1Name and y1NameList, or for y only by giving
y1NameList. For arrow plotting, giving y1NameList only is allowable for vectors
perpendicular to the page. Giving both x1Name and y1NameList is required for
vectors in the plane of the page.
One may give several -columnNames switches in a row in order to specify additional
“datanames” for the request. This may be convenient if, for example, one wants
several different x variables.

∗ -parameterNames=xName,yNameList[,{y1NameList | x1Name,y1NameList}]—
Identical to -columnNames, except it specifies parameter data to be plotted. As
with -columnNames, several such options may be given in a row in order to add
datanames.

∗ -keep[={names | files}] — Rarely used. Specifies starting a new plot request,
but retaining certain information from the previous request. If given without qual-
ifiers, the datanames (as specified by -columnNames or -parameterNames) and file-
names from the previous request are kept; this allows plotting the same data again
in a different way. If the names qualifier is given, the datanames from the previous
request are retained. If the files qualifier is given, the filenames from the previous
request are retained.

∗ -mpl[=noTitle][,noTopline] — Provided for compatibility with an older type of
data file and rarely used. Allows plotting of mpl data files with sddsplot. The x
and y columns of the mpl file are used. The qualifiers may be employed to inhibit
use of the mpl plot title and topline.

107

∗ -namescan={all | first} — Specifies whether sddsplot should scan all input files
when searching for matches to wildcard datanames, or only the first. The default is
to scan all files, which may be slow for many files with large numbers of columns or
parameters.

– Controlling output type:

∗ -listDevices—Lists the names of available graphics devices to the standard error
output.

∗ -device=deviceName[,deviceArguments]—Specifies the name of the graphics de-
vice, plus optional device-specific arguments. The default device is “motif”, unless
the SDDS DEVICE environment variable if defined, in which case the default device is
the one named. Some commonly-used devices that have device-specific arguments
are:

· motif — The device arguments are a single string of space-separated entries
of the form -resourceName value. These are passed directly to the MO-
TIF “outboard-driver” without any interpretation. The resource names may
be found in the help for the driver.

· mif — Three qualifiers are presently accepted. linesizeDefault=size sets
the default line thickness (normally 0.25). dashsizeDefault=size sets the de-
fault dash size (normally 1.0). lineIncrement=value sets the line thickness
increment between different line types.

· gif, tgif, sgif, mgif, lgif — Two qualifiers are presently accepted, both deal-
ing with output file setup. rootname=string specifies a rootname for automatic
filename generation; the resulting filenames are of the form rootname.DDD,
where DDD is a three-digit integer. template=string provides a more general
facility; one uses it to specify an sprintf-style format string to use in creating
filenames. For example, the behavior obtained using rootname=name may be
obtained using template=name.%03ld.

∗ -output=filename—Specifies the name of a file to which graphics output will be
sent. Used primarily for hardcopy devices (e.g., Postscript) where the data will be
sent to a printer. By default, the data for such devices is printed to the standard
output.

– Controlling type of plotting:

∗ -graphic=element[,type=integer][,subtype={integer | type}]
[,connect[={linetype | type | subtype}]][,vary[={type | subtype}]]
[,scale=factor][,{eachFile | eachPage |

eachRequest | fixByName}] — Specifies the type of graphic element to use for
data in the present plot request.
element may be one of line, symbol, errorBar, impulse, yimpulse, bar, ybar,
dot, or continue. These are largely self-explanatory. continue specifies continuing
whatever was done in the previous request. impulse is a line extending from y=0
to the data value, while bar is a line extending from the bottom of the plot region
to the data value. yimpulse and ybar are analogous except that the line extends
from x=0 or from the left-hand vertical border of the plot.
The type field for the graphic element has different meanings for different elements.
For lines, impulses, bars, and dots, the type is the color or line style used, depending
on the device. For most devices, values between 0 and 15 inclusive given unique lines.

108

For symbols and error bars, the type specifies the style of symbol or error bar to use;
the value is between 0 and 8 inclusive for symbols and between 0 and 1 inclusive for
error bars.
The subtype field is meaningful only for symbols, error bars, and dots. It specifies
the line style or color to be used in making a symbol or error bar, and the size for
a dot. As for the type field for line plotting, the value may be between 0 and 15
inclusive. The connect qualifier is also valid for symbols and error bars only. It
specifies that the symbols and error bars should be connected by lines. By default,
the line type used is 0.
If one desires automatic variation of the line color, symbol type, and so on, one may
obtain this using the vary qualifier. By default, the type is varied. The eachFile,
eachPage, eachRequest, or fixByName may be given to specify how to assign type
or subtype. For eachFile, variation is done separately for data from different files.
For eachPage, variation is done separately for data from different pages (hence,
items from different pages would have the same line or symbol). For eachRequest,
variation is done separately for each request. The fixByName qualifier in constrast
assigns fixed graphic attributes to items according to the y name.

∗ -arrowSettings=[,autoScale][scale=factor][,linetype=integer]

[,centered][,singleBarb][,barbLength=value][,barbAngle=value]

[,{cartesianData | polarData | scalarData}] —Specifies parameters for plot-
ting vectors using arrows.
autoScale specifies that the scale factor for the length of arrows should be chosen
automatically; if several data pages are being plotted separately, the same scale is
used for all of them. scale may be used instead of autoScale to set the factor man-
ually; if both are given, then the factor given with scale multiplies that computed
by autoScale.
linetype specifies the line type to use for the arrows, using the same mechanism
as for lines in the -graphic switch. The default is 0.
cartesianData, polarData, and scalarData specify the type of data being pro-
vided. For the first two, one must have specified both x1Name and y1NameList in
the plot request; for cartesianData, x1 and y1 are the x and y vector components,
while for polarData x1 is the length and y1 is the angle in radians from the positive
x direction.
centered specifies that arrows should be centered on the corresponding (x, y) point;
by default, the arrow starts at the (x, y) point. singleBarb specifies that arrows
should have only a single barb, rather than the default two barbs; this can be
significantly faster for large amounts of data. barbLength and barbAngle specify
the length and angle of arrow barbs; the barb length is a specified as a fraction of
the arrow length, which the barb angle is specified in degrees.

∗ -linetypeDefault=integer— Specifies the default line type for borders, legend
text, labels, axes, and so on. If not given, 0 is used.

– Controlling the plotting region:

∗ -scales=xmin,xmax,ymin,ymax—Specifies the region of the plot in user’s coordi-
nates. If xmin and xmax are equal, then autoscaling is used in x, and similarly for y.
Note that data outside the specified region is still plotted, so that proper clipping
of lines occurs.

∗ -range=[{x|y}Minimum=value][,{x|y}Maximum=value][,{x|y}Center=value]

109

— Constrains the extent and center of the plot in user’s coordinates. xminimum

specifies the minimum allowable horizontal extent of the plot; if the autoscaled (or
user-specified) range is less than this, the range is increased symmetrically to this
value. Similarly, xmaximum specifies the maximum allowable horizontal extent of
the plot. xcenter specifies the center of the horizontal range without affecting the
extent. The y options are the same, but for the vertical coordinates.

∗ -unsuppressZero[=x][,y]—Specifies that x=0 and/or y=0 should be within the
region of the plot. If given without qualifiers, both x and y are “unsuppressed”.

∗ -sameScale[=x][,y][,global]—Specifies that separate panels of data shall be
displayed on the same scales. In other words, any autoscaling is done based on all
of the data from a request, rather than simply the data on a particular plot panel.
If given without these qualifiers, both x and y are affected. global forces sddsplot
to impose the desired condition across all plot requests.

∗ -zoom=[{x|y}Factor=value][,{x|p}Center=value][,{y|q}Center=value] —
Specifies zoom and pan starting from the scales set by autoscaling or by -scales. A
factor less than (greater than) unity zooms out (in). For each dimension, one may
specify the center of the plot using either the

∗ -aspectRatio=value — Specifies the y/x aspect ratio of the plot. The value must
be nonzero. If it is positive, then the desired aspect ratio is obtained by altering the
pspace. If it is negative, the desired aspect ratio (the absolute value of the value
given) is obtained by altering the data coordinate range.

∗ -pSpace=hMin,hMax,vMin,vMax—This option is seldom used, but allows control of
the region of the panel that is mapped to data coordinates, said region being the
“plot space” or “pspace”. The first two coordinates give the horizontal extent, while
the second two give the vertical extent. The coordinate values are between 0 and 1.
The defaults are [0.15, 0.9]x[0.15, 0.9].

– Controlling axes, numeric labels, ticks, and grids:

∗ -axes[=x][,y][,linetype=integer]—Specifies that axes will be placed on the
plot, if they are visible. By default, both x and y axes are created, with the same
linetype as the labels, scales, and plot border. One may select a given axis by supply
the x or y qualifier. One may specify the line type to use for the axes using the
linetype qualifier.

∗ -tickSettings=[,[{x|y}]grid][[{x|y}]spacing=value]
[,[{x|y}]factor=value][,[{x|y}]modulus=value]
[,[{x|y}]size=fraction][,[{x|y}]linetype=integer]
[,[{x|y}]logarithmic] — Specifies how to make ticks and numeric labels for the
x and y dimensions. All of the qualifiers have an x and y variant, e.g., xgrid and
ygrid. Some have a variant that includes both x and y (e.g., grid). In the case
of the grid option, xgrid specifies grid lines rather than ticks for the x dimension,
ygrid is similar for the y dimension, and grid specifies grid lines in both dimensions.
The factor qualifiers specify factors to apply to the data values in producing the
labels. For example, one might want to muliply small values by a power of ten in
order to get labels that are of order units. The spacing values give the spacing
of the ticks and labels with any factor included. I.e., to keep the same number of
ticks, factor and spacing values must be increased together. Usually, giving the
spacing qualifiers is unnecessary, since sddsplot chooses appropriate values.

110

The modulus qualifiers allow printing the modulus of the label value rather than
the value itself; for example, one might use xmodulus=24 if x was the time in hours
over many days. The size qualifiers permit specification of the size of the ticks as
a fraction of the range in the opposing dimension; the default is 0.02. The linetype

qualifiers specify the linetype to be used for ticks and grid lines, using integer values
as for the -graph=line switch. The logarithmic qualifiers specify log-style ticks
and labels; the implication is that the data being plotted is the base-ten logarithm
of something.

∗ -subTickSettings=[[{x|y}]divisions=integer][,[{x|y}]grid]
[,[{x|y}]linetype=integer][,[{x|y}]size=fraction]—Specifies whether and
how to make subticks or subgrid lines for the x and y dimensions. All of the qual-
ifiers have two or more variants, one that applies to x, one that applies to y, and
(in some cases) one that applies to both. For example, xgrid requests grid lines
for x, ygrid requests grid lines for y, and grid requests grid lines for both x and
y. The divisions qualifiers specify the number of subdivisions of the major tick
intervals; the default is none. The linetype qualifiers specify the line type to use
for subticks or subgrid lines. The fraction qualifiers specify the size of the subticks
as a fraction of the plotting region; the default is 0.01.

∗ -yScalesGroup={ID=string | fileIndex | nameIndex | nameString |

page | request | tag | subpage | iNameString} — Specifies multiple vertical
scales. The most common form is |-yscalesGroup=namestring|, which uses a

separate scale for every separately-named quantity. Otherwise, one

specifies a separate scale for items from different files (by file

index), with different name index, different page, and so on. The

tag is a quality of a dataset specified with the -tag option.

iNameString is the name string in inverse order (i.e., so that one

compares namestrings starting at the end rather than the beginning).

These qualifiers are shared with the groupBy and separate options.

∗ -xScalesGroup --- Identical to yScalesGroup but for x axis scales.

∗
alignZero[={xcenter|xfactor|pPin=value}][,{ycenter|yfactor|qPin=value}]
--- This option is provides a facility for lining up zeros on plots

with multiple axes. You must give at least one of the qualifiers.

The xfactor and yfactor qualifiers request multiplication of the

upper and lower limits for each scale by the smallest factors that

will line up the zeros. The xcenter and ycenter qualifiers position

the zeros at the center of the plot space, which may result in empty

regions on the plot. The pPin and qPin allow specifying the point at

which to ‘‘pin’’ the zeros, in plot-space coordinates (0 to 1).

∗ -grid[=x][,y]---This option is superseeded by the -tickSettings

option. It permits specification that grids (rather than ticks) will

be used for major divisions.

∗ -noScales---Specifies that no scales (i.e., no ticks, subticks, or

numeric labels) will be plotted.

∗ -noBorder---Specifies that no border will be made around the plot

region. Implies -noScales.

– Controlling text labels:

111

∗ -xLabel=[{@parameterName | string} | use={name | symbol |

description}][,units][,offset=value][,scale=value][,edit=string]—
Controls size, placement, and content of the x dimension label, which appears di-
rectly under the scale labels. The default text is of the form symbol (units), where
the symbol and units are taken from the column or parameter definition fields in
the SDDS header for the x data. If the symbol is blank, then the element name
is used. Alternatively, the text may be taken from a named string parameter, or
from a string that is given explicitly, or the user may specify with the use qualifier
that the element name, symbol, or descrpition be used. The user may also force the
appearance of the units on the label using the units qualifier. The label text may
be edited using Toolkit editing commands (SDDS editing (4.71)).
The offset and scale qualifiers allow changing the position and size of the label.
The offset is specified as a fraction of the vertical dimension of the plot region.
The scale is simply a multiplicative factor.
Note that if the value of the parameter parameterName changes from page to page
in a file, and if separate pages are plotted in different panels, then the label for each
panel will be different. If the pages are plotted together, the value of the parameter
from the first page will be used.

∗ -yLabel—This switch has identical usage to -xLabel. -yLabel controls the y di-
mension label. The default text contains the y data names of all the columns and
parameters being displayed. If the data all have the same units, the units are dis-
played as well. This information is taken from the appropriate entries in the SDDS
header. The offset qualifier gives the label offset as a fraction of the horizontal
dimension of the plot region.

∗ -verticalPrint={up | down}—Specifies the direction of print for the y dimension
label. The default is up.

∗ -title—This switch has identical usage to -xLabel. The default text is from the
contents field of the description command in the first file from which data is
displayed.

∗ -topTitle—Normally, the title goes below the x dimension label. This switch
directs that it be placed at the top of the plot, above the “topline label”.

∗ -topline—This switch has identical usage to -xLabel. It is blank by default.

∗ -filenamesOnTopline—Directs that the topline text contain the names of the files
from which data is displayed.

∗ -labelSize=fraction — Obsolete: Specifies a common size for all labels, in-
cluding numeric labels. In the original version of sddsplot, the fraction was the
horizontal size of the characters as a fraction of the horizontal size of the plot region.
This meaning is no longer precisely true because the new version doesn’t used fixed
character sizes. However, this option may still be used to scale character sizes up
and down. The previous nominal value for fraction was 0.03, which is now used as
the reference point for scaling. Hence, if you specify 0.06, the character sizes would
be doubled.

∗ -noLabels—Specifies that no labels (i.e., x and y dimension labels, title, and topline
label) will be made.

∗ -string={@parameterName | string},{x|p}Coordinate=value
{y|q}Coordinate=value[,scale=factor][,angle=degrees]
[,justifyMode=mode][,linetype=integer][,edit=string] — Specifies display

112

of string data on the plot. The string may either be extracted from a named string
parameter or given explicitly. If the value of the parameter parameterName changes
from page to page in a file, and if separate pages are plotted in different panels, then
the label for each panel will be different. If the pages are plotted together, the value
of the parameter from the first page will be used.
The coordinates of the string may be specified either in users coordinates (i.e., x
and y), or unit coordinates (i.e., p and q); the unit coordinates are (0,0) at the lower
left of the plot region and (1,1) at the upper right. scale permits changing the size
of the letters by a specified factor. angle permits changing the angle of the string;
a value of 90 gives upward vertical print.
Normally, text is “left bottom” justified, which means that the coordinates given
are those of the left bottom corner of the first letter of the string. Justification
may be changed with the justifyMode qualifier, which accepts a mode string of
the form { l | r | c}{t | b | c}. The letters stand for Left, Right, Center,
Top, and Bottom, respectively. The default justification would thus be specified as
justify=lb.
The text is normally creating using line type 0. This may be changed with the
linetype option. As with the other labels, the text may be edited using Toolkit
editing commands (SDDS editing (4.71)).

∗ -dateStamp—Directs that a time and date stamp be placed on the plot. It appears
in the upper left corner of the plot.

– Altering or rearranging data prior to plotting:

∗ -swap—Specifies that the x data will be plotted as y and vice-versa.

∗ -transpose—Specifies that the data matrix be transposed prior to plotting. This
means, for example, that if the plot request specified N columns of y data and if the
table contained M rows, one would get a plot of M quantities as a function of the
index of the column. The implicit assumption is that the N columns contain com-
parable quantities. This would allow one to display, for example, how the quantities
changed from row to row in the data. Each row of data thus organized is marked as
a separate “subpage” (see the -groupBy and -separate switches), so that one can
for example split rows onto separate panels.

∗ -factor=[{x|y}Multiplier=value] — Specifies that the x and/or y data for the
present request will be multiplied by the given values. Note that it is the users
responsibility to ensure that the units that are displayed are corrected, if required.

∗ -offset=[{x|y}Change=value][,{x|y}Parameter=value][,{x|y}Invert] —
Specifies that the x and/or the y data be offset by either specified values, qor by val-
ues in named numerical parameters. Normally, the offset is of the form x → x + xo.
The invert qualifiers cause the offset to be subtracted rather than added.
If -factor is given together with -offset, then the offset is applied first.

∗ -mode={x | y}={linear | logarithmic | normalize | offset | coffset |

center | meanCenter | specialScales}[,...] —
Invokes one or more standard transformations of data, independently for x and y
values. The linear mode is the default. normalize mode directs that data be
displayed after independent normalization to the interval [-1, 1]; to do this, the
data is divided by the maximum absolute value in the data. The offset, coffset,
center, and meanCenter qualifiers result in shifting of the data: offset directs
that data be shifted so that the first value plotted is zero; coffset directs the data

113

to use a common offset from the first plot; center directs that data be shifted the
center of the range is zero; meanCenter directs that the data be shifted so that the
average plotted value is zero.
logarithmic mode implies that the base-ten logarithmic of the appropriate values
is taken prior to plotting. Normally, this does not produce log-type scales; use of the
specialScales keyword together with the logarithmic keyword will obtain this.
One can also use the -tickSettings option for this, which is the preferred method.

∗ -stagger=[xIncrement=value][,yIncrement=value][,files][,datanames] —
Directs that data displayed on the same panel will be incrementally offset for dis-
play. This is useful in order to make mountain range plots, or to offset similar
data for clarity. xIncrement and yIncrement are used to specify the increments for
each dimension; zero is the default. Normally, only data from the same column or
parameter is staggered, with the stagger amount increasing with each page in the
file. The files qualifier directs incrementing the offset when plotting proceeds to a
new file on the same panel. The datanames qualifier directs incrementing the offset
when plotting proceeds to a new dataname (i.e., column or parameter name) within
the same file on the same panel.

∗ -enumeratedScales=[interval=integer][,limit=integer][,scale=factor]

[,allTicks][,rotate][,editCommand=string] — Allows control of the display
of enumerated value strings when the x data is of string type. interval=N spec-
ifies displaying and making a tick for every Nth enumerated value; the default is
1. Also, limit=M specifies displaying and making a tick for only M enumerated
values at equal spacing; the default is unlimited. If one of these options is employed
but one desires to see all the ticks (even those without labels), the allTicks qual-
ifier may be given. scale specifies a factor by which to increase the size of the
text. rotate specifies rotation of the printed text from the normal orientation to
the optional orientation; if enumerated data is displayed along the x dimension, the
normal (optional) orientation is vertical (horizontal) printing. These are reversed if
the enumerated data is displayed along the y dimension.

– Creating legends and data labels:

∗ -legend[={ {x|y}Symbol | {x|y}Description | {x|y}Name | filename |

specified=string | parameter=name}] [,editCommand=string]

[,firstFileOnly][,scale=factor] — Specifies creation of a legend for the
datanames in the current request. By default, the legend text is the symbol field
for the y data; if the symbol is blank, the dataname is used. xSymbol and ySymbol

specify use of the x or y data symbols, or the datanames if the requested symbol
is blank. xDescription and yDescription specify use of the indicated description
fields. xName and yName specify use of the indicated datanames. filename spec-
ifies use of the name of the file from which the data comes. specified=string

specifies use of the given string. parameter=name specifies use of the contents of
the named string parameter. Any legend text may be editing using SDDS editing
commandsSDDS Editing (??) via the editCommand qualifier. If firstFileOnly is
given, only the first file in the request will have legends generated. If scale=factor
is given, the legend text size is scaled by the given factor.

∗ -lSpace=qmin,qmax,pmin,pmax—Specifies the region in which legends will be
placed. The coordinates are pspace coordinates. Since the legends are typically
outside the pspace, the coordinates may be greater than unity. For example, the

114

default values are [1.02, 1.18]x[0.0, 1.0]. This option is usually used to place the
legend inside the pspace, or to extend the size of the lspace to accomodate long
legend text.

∗ -pointLabel=name[,edit=editCommand][,scale=number]

[,justifyMode={rcl}{bct}] — Specifies labeling of individual data points using
data from column or parameter name. The labels may be edited by specifying an
editCommand with the edit qualifier. The scale qualifier may be used to scale
the label size. The justifyMode qualifer is used to change the location of the label
relative to the point; the first letter gives the horizontal justification (right, center,
or left) and the second gives the vertical justification (bottom, center, or top).

– Creating overlays:

The overlay feature allows displaying data that has different scales on the same plot. In
most cases, it is superseded by the -yScalesGroup and -xScalesGroup options. The
only exception is when one wants to overlay data without having scales shown for the
data. (An example is plotting magnet layouts for Twiss parameter plots using the
magnets output from elegant.)

-overlay=[{x|y}mode=mode][,{x|y}factor=value]
[,{x|y}offset=value] [,{x|y}center]—Normally, sddsplot displays all data on a
single panel on the same scale. In some cases, one wants to overlay data that is on a
different scale from other data on the panel. One way to do this is with the -overlay

switch, which gives convenient control of how overlayed data is displayed. Any data in
a plot request for which this switch is given will be overlayed as specified.

The xmode and ymode options allow two types of scaling for x and y independently. A
mode of normal means that the indicated data is treated normally. The default mode
is unit, which means that the data is scaled so that its full range is equal to the full
coordinate range of the plot in the appropriate (x or y) dimension.

The data is further adjusted according to any additional qualifiers given. The center

qualifiers offset the data so that the data is centered in the plot space; normally, zero
in the data is mapped to zero in the user’s coordinates. The factor qualifiers scale the
data by the given factor about the center value. The offset qualifiers offset the data
by specified amounts; if mode=normal, the offset is in user’s coordinates, otherwise it is
in pspace coordinates.

Users needing only the factor facility should consider the -factor switch, since it is
easier to use.

– Controlling plot panels:

∗ -newPanel—Specifies that the current plot request will start a new plot panel.

∗ -endPanel—Specifies that the current plot request will end the current plot panel.

∗ -layout=hNumber,vNumber[,limitPerPage=integer]—Specifies the layout of
panels on each plot page. The maximum number of panels on any page is the product
of hNumber and vNumber, which are the number of panels horizontally and verti-
cally, respectively. The default is hNumber=1 and vNumber=1. If limitPerPage is
given, then only the specified number of panels will appear on any page; for exam-
ple, -layout=2,2,limit=3 would imply three panel spaces per page, with one left
blank.

– Grouping, sorting, and separating data:

115

∗ -sever[=xGap=value][,yGap=value]—For line plotting, sddsplot will normally
connect points sequentially without regard for gaps in the data. The -sever switch
specifies various means of locating gaps in data and directs lifting the “pen” when-
ever a gap occurs. If -sever is given without qualifiers, the pen is lifted whenever
the x value decreases; this is useful for plotting data where the x value is expected
to increase monotonically for each group of points.
The xgap and ygap qualifiers invoke a more sophisticated and more generally appli-
cable form of severing. For each dimension for which severing is requested, the pen
is lifted whenever the absolute difference of two successive values exceeds a defined
limit. This limit is specified either in absolute or fractional terms using the value

entry. If value is positive, the gap threshold is equal to value. If value is negative,
the gap threshold is -value times the mean spacing between successive points; a
value of -1.5 has been found to work well for data that is roughly equispaced with
occasional missing points.

∗ -tagRequest={number | @parameterName}—Specifies that data from the current
requested will be tagged with either the given (generally floating-point) number, or
with the values from the numeric parameter parameterName. Using the -groupBy

and -separate options permits grouping and sorting of data by tag values. If a
data set has multiple pages in the file, and if pages are split (see -split below),
then parameter-tagged data will have the parameter value from the first page in
each group of pages.

∗ -groupBy[=request][,tag][,fileIndex][,nameIndex][,page][,subpage]

[,fileString][,nameString][,iNameString] — Specifies how internal data sets
will be ordered. -sortBy might have been a more appropriate name for this switch.
The qualifiers that appear in the list are shown in the order that corresponds to the
default sorting. The file index is the sequential number within the request of the
file from which the internal data set is taken; the file string is the name of the file.
The name index is the sequential index within the request of the dataname group
for the internal data set, while the name string is the name of the y data. The page
is the sequential number in the file of the first SDDS data page from which data
appears in the internal data set. The subpage is a sequential number within each
internal data set, which allows subdivision of the internal data set. The request is
the sequential number of the plot request that resulted in generation of the internal
data set. The tag is a single user-supplied value or a value read from a parameter
that is associated with each internal data set; by default, all data sets are tagged
with the value 0. If a file is split into several internal data sets, each may have a
different tag value if the tag is read from a parameter; in this case, the data sets are
eached tagged with the value for the first included data page.
The order in which the qualifiers to -groupBy are given determines the priority
of sorting by the various criteria. In the default ordering, data sets are sorted by
request number, subsorted by tag (usually a null operation unless data is tagged
by the user), subsubsorted by file index, subsubsubsorted by dataname index, etc.
Each successive qualifier results in moving the indicated sort criterion to the next
highest priority. Any qualifiers not given are retained in the default order.
If one wanted to bring together, for example, internal data sets with the same data
name, one would give -groupby=nameString. In this case, the new sorting priority
would be nameString, request, tag, etc.

116

∗ -separate[={numberToGroup | groupsOf=number | fileIndex | fileString

| nameIndex | nameString | page |

subpage | request | tag | iNameString}] — Specifies how to separate inter-
nal data sets onto panels. If given with no qualifiers, each internal data set is placed
on a separate panel. If given with a single integer argument, or with the groupsOf

qualifier, then the specified number of data sets appear on each panel; the data sets
are assign to panels in the order determined by -groupBy or the default thereof.
If one of the other qualifiers is given, then panel separation occurs when the indicated
criterion changes as the data sets are accessed in sorted order. Most commonly, one
uses -groupby=criterion -separate=criterion. For example, one might want to
group by filename and separate by filename.

∗ -split={pages[,interval=integer] |

parameterChange=name[,width=value][,offset=value]

| columnBin=name,width=name[,start=value][,completely]}—As discussed in
the introductory sections, when sddsplot reads data for one dataname group from
a file, it normally concatenates data from successive pages to form a single internal
data set. This would mean, for example, that all of the data from the file would
be displayed with the same linetype or symbol. The -split switch overrides this
behavior, splitting the data into multiple internal data sets.
The simplest and most commonly-used way of doing this is to split the data page
boundaries; this is done using the -split=pages mode. The optional interval
specifies spliting after a specified number of page boundaries. Splitting data does
not imply that the data will appear on separate plot panels, but allows this and other
possibilities. (To separate page-split data onto panels, one uses -separate=pages,
as discussed above.)
One can also page-split based on the value of a parameter, using
-split=parameterChange. This directs that a new internal data set will be started
wheneven the named parameter changes. For numeric parameters, the width and
start qualifiers may be used. If width is specified, the change must exceed the given
value before a split occurs. If start is specified, the reference value for changes
is set to the given value; otherwise, the first parameter value is used. (For ex-
ample, one might wish to split when a parameter changed by 5 units referenced
from 2.5 units, giving boundaries of 7.5, 12.5, etc.; this would be obtained with
width=5,start=2.5.)
The columnBin mode is different from the other two modes. Rather than split-
ting data into internal data sets at page boundaries, it groups or bins data into
subpages according to the value in a specified numeric column. (It is appropriate
only for plotting column data.) columnBin mode may be used with pages mode
to split and subsplit data into pages and subpages. For example, one might have a
data file with many pages of time-series data. One might want to plot each page
separately, but within each page one might want to color-code the points accord-
ing to some value in the table (e.g., a valid-data indicator). This would be ac-
complished using -split=pages,columnBin=name,width=value -separate=pages

-graph=dot,vary,eachPage.

∗ -omniPresent—Specifies that the data sets from the current request will appear on
all plot panels.

– Winnowing data:

117

∗ -limit=[{x|y}Minimum=value][,{x|y}Maximum=value][,autoscaling]— Speci-
fies limits to be placed on x and y values prior to plotting. Points beyond the indi-
cated limits are eliminated from the data prior to plotting. This complements the
facility available from -filter and -match in that one need not specify the name
of the data one is winnowing with. This permits easier filtering of data from many
columns or parameters.
The autoscaling qualifier specifies that sddsplot will not remove data outside the
defined limits, but rather that it will ignore it for purposes of autoscaling. If lines are
used to connect data points, this could result in lines being drawn to the boundary
of the plot region, thus showing the presence of extreme points.

∗ -sparse=interval[,offset]—Specifies that only every intervalth point will be
used. If offset is not given, the first point in the internal data set is the first taken;
otherwise, the offsetth point is the first taken.

∗ -sample=fraction—Specifies random sampling of data to retain only the indicated
fraction of the points. fraction gives the probability that any point will be used.
Hence, the data actually used may vary from run to run since the random number
generator is seeded with the system clock.

∗ -clip=head,tail[,invert]—Specifies removal of head points from the beginning
and tail points from the end of each internal data set. If invert is given, the points
that would have been removed are instead the only ones used.

∗ -presparse=interval[,offset]—Similar to -sparse, except that sparsing is done
at the time the data page is read and only once for all requests and datanames
that draw data from the data page. This is faster, and is usually what is desired.
However, if one wants to plot sparsed and unsparsed data from the same file at the
same time, -presparse cannot be used. If both presparse and sparse are given,
both are applied.

∗ -filter={column | parameter},rangeSpec[,rangeSpec,logicOp...] —
Specifies winnowing each internal data set based on numerical data in parameters
or columns. A range-spec is of the form name,lower-value,upper-value[,!] ,
where ! signifies logical negation. A point passes a column-based filter if the value
in the named column is inside (or outside, if negation is given) the specified range,
where the endpoints are considered inside. parameter-based filters are similar, ex-
cept that the point passes only if the value of the named parameter for the page from
which it comes is acceptable. One or more range specifications may be combined to
give a accept/reject status by employing the logic-operations, & (logical and) and |

(logical or).

∗ -timeFilter={column | parameter},[before=YYYY/MM/DD@HH:MM:SS]
[,after=YYYY/MM/DD@HH:MM:SS][,invert] — Specifies date range
in YYYY/MM/DD@HH:MM:SS format in time parameters or columns. The in-
vert option cause the filter to be inverted, so that the data that would otherwise
be kept is removed and vice-versa. For example, if one want to keep data between
8:30AM on Januaray 2, 2003 and 9:20PM on February 6,2003, the option woould
be -timeFilter=column,Time,before=2003/2/6@21:20,after=2003/1/2@8:30 assume
that the time data is in the column Time.

∗ -match={column | parameter},matchTest[,matchTest,logicOp] — Specifies
winnowing based on data in string parameters or columns. A matchTest is of the
form name=matchingString[,!], where the matching string may include wildcards.

118

If the first character of matchingString is ’@’, then the remainder of the string is
taken to be the name of a parameter or column. In this case, the match is performed
to the data in the named entity.
The use of several match tests and logic is done just as for -filter. For ex-
ample, to match all the rows for which the column Name starts with ’A’ or ’B’,
one could use -match=column,Name=A*,Name=B*,|. (This could also be done with
-match=column,Name=[AB]*.)

– Miscellaneous:

∗ -repeat[=checkSeconds=number][,timeOut=seconds]— Specifies repeated plot-
ting of data from the files, with replotting occuring when any file is modified. By
default, sddsplot checks the files every second and times out after 900s of no change.
This is available on UNIX systems only. It is best used with the motif device type
and the following device argument: -device=motif,’’-movie true -keep 1’’.

∗ -drawLine=

{x0Value=value|p0Value=value|x0parameter=name|p0parameter=name}
{x1Value=value|p1Value=value|x1parameter=name|p1parameter=name}
{y0Value=value|q0Value=value|y0parameter=name|q0parameter=name}
{y1Value=value|q1Value=value|y1parameter=name|q1parameter=name}
— Specifies drawing of lines on the plot by giving the two endpoints of the line.
For each endpoint (labeled ’0’ and ’1’), one must specify the x or p coordinate (for
horizontal) and the y or q coordinate (for vertical). Each coordinate name be spec-
ified explicitly (e.g., x0Value=1.7) or via a parameter (e.g., x0parameter=alpha).
If a parameter is given, the coordinate can change as the parameter value changes
in the file.

• special characters: sddsplot supports Greek and mathematical characters in labels and
strings through special sequences embedded in text strings. A similar mechanism is used to
allow character-by-character control over size and positioning. The special sequences are of
the form $character, where character may be one of the following:

– a, b, n: provide subscript and superscript control. a puts the character Above the normal
position (superscript), b puts the character Below the normal position (subscript), and
n returns to Normal.

– g, r: provide for switching between Greek and Roman character sets. $g switches into
Greek mode, while $r switches back to Roman mode. The correspondance between
Greek characters and the alphabet is shown in Figure 1. For example, to make a lower-
case alpha, one would use gar.

– s, e: provide for switching between Special and normal characters. $s switches to special
character mode, which provides mathematical and other symbols. Figure 1 shows the
correspondance between special characters and keyboard characters. For example, to
make a ± symbol, one would employ sae, while a right-pointing arrow would be
obtained with $s5$e.

– i, d: provide for Increasing and Decreasing the character size. The two sequences $i

and $d are inverses of each other. $i increases the size of subsequent characters by 50%,
while $d decreases the size of subsequent characters by 33 1

3
%. These are seldom used,

since sddsplot provides other means of controlling the size of characters in labels and
strings.

119

Figure 1: Special character set

– u, v: provide for motion of the baseline Up and down by one half character height.

– t, f: provide for making Taller and Fatter characters. $t makes characters twice as tall
while maintaining width, while $f makes characters half as tall while maintaining width.

– h: specifies moving back one half space.

• environment variables:

– SDDS DEVICE — Gives the name of the device type to use as the default.

• see also:

– Data for Examples (see 3.3)

– SDDS editing (4.71)

– SDDS Wildcard Conventions (4.73)

• author: M. Borland, ANL/APS.

• acknowledgements: sddsplot uses device driver code from the program GNUPLOT, with
modifications and enhancements made at Argonne. The GNUPLOT code is covered by a

120

separate copyright, and is used by permission of the authors. See the GNUPLOT README file
included with the distribution for restrictions associated with this code.

The GUI X-windows program (mpl motif) was written by K. Evans of ANL/APS.

The GIF drivers use the gd 1.2 library by Thomas Boutell. The latter is copyrighted by the
Quest Protein Database Center, Cold Spring Harbor Labs.

121

4.51 sddsprintout

• description:

sddsprintout provides formatted text output of data from columns and parameters. It is
similar to sdds2stream, but provides better control of the appearance of the text.

• examples: Make a printout of APS design beta functions along with the tunes:

sddsprintout APS0.twi -column=ElementName -column=’beta?’ -parameters=’nu?’

• synopsis:

sddsprintout [-pipe[=input]] [SDDSinput] [outputFile]

[-columns[=nameList[,format=string][,label=string][,editLabel=command]

[,useDefaultFormat][,endsLine][,blankLines=number]]]

[-parameters[=nameList[,format=string][,label=string][,editLabel=command]

[,useDefaultFormat][,endsLine][,blankLines=number]]]

[-spreadsheet[=delimiter=string][,quoteMark=string][,noLabels][,schFile=filename]]

[-fromPage=number] [-toPage=number]

[-formatDefaults=SDDStype=formatString[,...]] [-width=integer]

[-pageAdvance] [-paginate[=lines=number][,noTitle][,noLabels]]

[-postPageLines=number] [-title=string] [-noTitle] [-noWarnings]

• files: SDDSinput is the SDDS file from which data is printed. outputFile is a file to which
the printout will go; by default, the printout goes to the standard output.

• switches:

– -pipe[=input] — The standard SDDS Toolkit pipe option.

– -columns[=nameList[,format=string][,label=string][,editLabel=command]

[,useDefaultFormat][,endsline][,blankLines=number]] — Specifies the names of
columns to appear in the printout. nameList may contain one or more comma-separated
strings, each of which may contain wildcards. If more than one string is given, the list
must be enclosed in parentheses, e.g., -columns=’(betax,betay)’.

The format qualifier may be used to specify a printf-style format string for the named
columns; in this case, all of the columns must have the same data type. The format
string should contain a width field, to ensure proper alignment of text, e.g., %30s rather
than %s. The useDefaultFormat qualifier directs that sddsprintout use its own default
format for the data type in question, as opposed to any format that might be specified
in the SDDS header.

The label qualifier can be used to specify the column label in the printout (by default,
the column name is used); the label may be edited using the editLabel qualifier and a
standard editing sequence.

If the endsLine qualifier is given, a line break is issued after the last column of the list
is printed. The blankLies qualifier may be used to specify that one or more blank lines
be emitted following such a line break.

Any number of -columns options may be given.

– -parameters... — Identical to -columns, except that printout of parameters is speci-
fied.

122

–

-spreadsheet[=delimiter=string][,quoteMark=string][,noLabels][,schFile=filename]

— Specifies spreadsheet compatible output, using the given delimiter between columns.
In this mode, simplified header is printed and no line width limits are imposed. The de-
fault delimiter is a tab. The default quotation mark is .̈ If the schfile qualifier is given,
a header file for comma-separated-values data is generated. In this case, the delimiter
should be a comma.

– fromPage=number — Specifies the first data page of the file that will appear in the
printout. By default, the printout starts with data page 1.

– toPage=number — Specifies the last page of the file that will appear in the printout. By
default, the printout ends with the last data page in the file.

– formatDefaults=SDDStype=formatString[,...] — Specifies default printf format
strings for named SDDS data types. The SDDStype qualifier may be one of float,
double, long, short, string, or character.

– -width=integer — Specifies the width of the output line in number of characters. The
default is 130.

– -pageAdvance — Specifies that the page be advanced at the end of every data page of
the SDDS file. This is done by emitting any ASCII page advance character, which will
probably work only if the output is sent to a printer.

– -paginate — Specifies pagination of the output, using a default 66 line page. The lines
qualifier may be used to change the page length. By default, the title and column labels
are printed for each page. These may be disabled using the notitle and nolabels

qualifiers.

– -postPageLines — Specifies that a number of blank lines shall be emitted at the end
of the printout for each page. By default, there are no blank lines between pages.

– -title=string — Specifies the title for the printout.

– -noTitle — Specifies that no title be printed.

– -noWarnings — Suppresses warning messages, such as those concerning data elements
requested in the printout that are not in the input file.

• see also:

– Data for Examples (see 3.3)

– sdds2spreadsheet (4.7)

– sdds2stream (4.8)

• author: M. Borland, ANL/APS.

123

4.52 sddsprocess

• description:

sddsprocess operates on the data columns and parameters of an existing SDDS data set
and creates a new data set. The program supports filtering and matching operations on
both tabular data and parameter data, definition of new parameters and columns in terms of
existing ones, units conversions, scanning of string data to produce numeric data, composition
of string data from other data types, statistical and waveform analyses, and other operations.

• examples: Compute the square-roots of the beta-functions, which are the beam-size en-
velopes:

sddsprocess APS.twi -define=column,sqrtBetax,"betax sqrt"

-define=column,sqrtBetay,"betay sqrt"

Compute the horizontal beam-size, given by the equation

σx =
√

εxβx + (ηxσδ)2

sddsprocess APS.twi -define=parameter,epsx,8.2e-9,units=nm

-define=parameter,sigmaDelta,1e-3 -define=column,sigmax,"epsx betax *

sigmaDelta etax * sqr + sqrt",units=m

• synopsis:

sddsprocess [-pipe[=input][,output]] [inputFile] [outputFile] options

• files: inputFile is an SDDS file containing data to be processed. If no options are given, it
is copied to outputFile without change. Warning: if no output filename is given, and if an
output pipe is not selected, then the input file will be replaced.

• switches:

– Data winnowing: Any number of the following may be used. They are applied in the
order given. Note that -match and -test are the most time intensive; thus, if several
types of winnowing are to be applied, these should be used last if possible.

∗ -filter={column | parameter},rangeSpec[,rangeSpec[,logicOp...]] —
Specifies winnowing inputFile based on numerical data in parameters or columns.
A range-spec is of the form name,lower-value,upper-value[,!] , where ! sig-
nifies logical negation. A page passes a given filter by having the named parameter
inside (or outside, if negation is given) the specified range, where the endpoints are
considered inside. A tabular data row passes a given filter in the analogous fashion,
except that the value from the named column is used.
One or more range specifications may be combined to give a accept/reject status
by employing the logic-operations, & (logical and) and | (logical or). For exam-
ple, to select rows for which A is on [0, 1] and B is on [10, 20], one would use
-filter=column,A,0,1,B,10,20,&.

124

∗ -timeFilter={column | parameter},[before=YYYY/MM/DD@HH:MM:SS]
[,after=YYYY/MM/DD@HH:MM:SS][,invert] — Specifies date
range in YYY/MM/DD@HH:MM:SS format in time parameters or columns. The
invert option cause the filter to be inverted, so that the data that would otherwise
be kept is removed and vice-versa. For example, if one want to keep data between
8:30AM on Januaray 2, 2003 and 9:20PM on February 6,2003, the option woould
be -timeFilter=column,Time,before=2003/2/6@21:20,after=2003/1/2@8:30 assume
that the time data is in the column Time.

∗ -match={column | parameter},matchTest[,matchTest,logicOp] — Specifies
winnowing inputFile based on data in string parameters or columns. A match-test is
of the form name=matchingString[,!], where the matching string may include the
wildcards * (matches zero of more characters) and ? (matches any one character).
If the first character of matchingString is ’@’, then the remainder of the string is
taken to be the name of a parameter or column. In this case, the match is performed
to the data in the named entity. For column-based matching, this is done row-by-
row. For parameter-based matching, it is done page-by-page.
In addition, if instead of = one uses =+, then matching is case-insensitive. The
plus sign is intended to be mnemonic, as the case-insensitive matching results in
additional matches.
The use of several match tests and logic is done just as for -filter. For ex-
ample, to match all the rows for which the column Name starts with ’A’ or ’B’,
one could use -match=column,Name=A*,Name=B*,|. (This could also be done with
-match=column,Name=[AB]*.)

∗ -numberTest={column | parameter},name[,invert] — Specifies testing the val-
ues of in a string column (parameter) to see if they can be (or cannot be, if invert
is given) converted to numbers. If not, the corresponding row (page) is deleted.

∗ -test={column | parameter},test[,autostop][,algebraic] — Specifies win-
nowing of inputFile based on a test embodied in an rpn expression. The expression,
test, may use the names of any parameters or columns. If autostop is specified, the
processing of the data set (or data page) terminates when the parameter-based (or
column-based) expression is false.

∗ -clip=head,tail[,invert] — Specifies the number of data points to clip from
the head and tail of each page. If invert is given, the clipping retains rather than
deletes the indicated points.

∗ -fclip=head,tail[,invert] — Specifies the fraction of data points to clip from
the head and tail of each page. If invert is given, the clipping retains rather than
deletes the indicated points.

∗ -sparse=interval[,offset] — Specifies sparsing of each page with the indicated
interval. That is, only every intervalth row starting with row offset is copied to the
output. The default value of offset is 0.

∗ -sample=fraction — Specifies random sampling of rows such that approximately
the indicated fraction is kept. Since a random number generator is used that is
seeded with the system clock, this will usually never be the same twice.

– rpn calculator initialization:

∗ -rpnDefinitionsFiles=filename... — Specifies a list of comma-separated file-
names to be read in as rpn definitions files. By default, the file named in the

125

RPN DEFNS environment variable is read.

∗ -rpnExpression=expression[,repeat][,algebraic] — Specifies an rpn expres-
sion to be executed. If repeat is not specified, then the expression is executed before
processing begins. If repeat is specified, the expression is executed just after each
page is read; it may use values of any of the numerical parameters for that page.
This option may be given any number of times.

– Scanning from, editing, printing to, and executing string columns and parameters:

∗ -scan={column | parameter},newName,sourceName,sscanfString
[,definitionEntries] — Specifies creation of a new numeric column (parameter)
by scanning an existing string column (parameter) using a sscanf format string.
The default type of the new data is double; this may be changed by including
a definitionEntry of the form type=typeName. With the exception of the name

field, any valid namelist command field and value may be given as part of the
definitionEntries.
If sourceName contains wildcards, then newName must contain at least one occur-
rence of the string “%s”. In this case, for each name that matches sourceName,
an additional element is created, with a name created by substituting the name for
“%s” in newName.

∗ -edit={column | parameter},newName,sourceName,edit-command — Specifies
creation of a new string column (parameter) called newName by editing an ex-
isting string column (parameter) sourceName using an emacs-like editing string.
For details on editing commands, see SDDS editing (see 4.71).
If sourceName contains wildcards, then newName must contain at least one occur-
rence of the string “%s”. In this case, for each name that matches sourceName,
an additional element is created, with a name created by substituting the name for
“%s” in newName.

∗ -reedit={column | parameter},name,edit-command — Like -edit, except that
the element name must already exist. Each value is replaced by the value obtained
from applying edit-command.

∗ -print={column | parameter},newName,sprintfString,sourceName
[,sourceName...][,definitionEntries]— Specifies creation of a new string col-
umn (parameter) by formatted printing of one or more elements from other columns
(parameters). The sprintfString is a C-style format string such as might be given
to the routine sprintf. With the exception of the name field, any valid namelist
command field and value may be given as part of the definitionEntries.

∗ -reprint — Identical in syntax and function to -print, except that if newName

already exists, it is overwritten. No error or warning is issued.

∗ -format={column | parameter},newName,sourceName
[,stringFormat=sprintfString][,doubleFormat=sprintfString]

[,longFormat=sprintfString]— Reformats string data in different ways depend-
ing on the type of data the string contains. Each string is separated into tokens at
space boundaries. Each token is separately formatted, either as a long integer, a
double-precision floating point number, or a string, depending on what the token
appears to be. The formatting is done using the specified format strings; the default
format strings are %ld for longs, %21.15e for doubles, and %s for strings.

126

∗ -system={column | parameter},newName,commandName,
[definitionEntries] — Specifies creation of a new string column (parameter) by
executing an existing string column (parameter) using a subprocess. The first line of
output from the subprocess is acquired and placed in the new column (parameter).
If commandName contains wildcards, then newName must contain at least one oc-
currence of “%s”. In this case, for each name that matches commandName, an
additional element is created, with a name created by substituting the name for
“%s” in newName.

– Creation and modification of numeric columns and parameters:

∗ -convertUnits={column | parameter},name,newUnits,oldUnits,factor
— Specifies units conversion for the column or parameter name (which may contain
wildcards). The factor entry the factor by which the values must be multiplied to
convert them to the desired units. It is an error if oldUnits does not match the
original units of the column or parameter. Eventually, the factor entry will be made
optional by inclusion of conversion information in the program. This option may be
given any number of times.

∗ -define={column | parameter},name,equation[,select=matchString]
[,editSelection=editCommand][,definitionEntries][,algebraic]

— Specifies creation of a new column or parameter using an rpn expression to ob-
tain the values. For parameters, any parameter value may be obtained by giving
the parameter name in the expression. For columns, one may additionally get the
value of any column by giving its name in the expression; the expression given for
-define=column is essentially specifying a vector operation on columns with pa-
rameters as scalars. By default, the type of the new data is double. This and other
properties of the new column or parameter may be altered by giving definitionEn-

tries, which have the form fieldName=value; fieldName is the name of any namelist
command field (except the name field) for a column or parameter, as appropriate.
This option may be given any number of times.
Using the select qualifier, it is possible to use a single -define option to specify
many instances of new column definitions. If select is given, the input is searched
for all the column names matching matchString. These are then optionally editted
using the editCommand specified with editSelection. The resulting strings are
then substituted one at a time into name and equation, replacing all occurances of
“%s”. For example, suppose a file contained a number of column-pairs of the form
PrefixV1 and PrefixV2; to take the difference of each pair, one could use
-define=column,%sDiff,%sV1 %sV2 -,select=*V1,edit=%/V1//

sddsprocess permits read access to individual elements of a column of data using
the rpn array feature. For each column, an array of name &ColumnName is created;
the ampersand is to remind the user that the variable &ColumnName is the address
of the start of the array. To get the first element of a column named Data, one would
use 0 &Data [. This will function only within or following a -define=column or
-redefine=column operation. It is an error to attempt to access data beyond the
bounds of an array.
The number of columns, and the current page and row number are pre-loaded into
the rpn calculator memory according to the following table.

127

Quantity rpn memory

Page number i page

Page number table number

Row number i row

Number of rows n rows

For example, to generate a column of index number to a file, add the option
-define=col,Index,i row,type=long.

∗ -redefine — This option is identical to -define except that the column or param-
eter already exists in the input. The equation may use the previous values of the
entity being redefined by including the column name in the expression.

∗ -cast={column | parameter},newName,oldName,newType — This option allows
casting data from one numerical data type to another. It is much faster than trying
to do the same operation using -define. The string newType may be any of double,
float, long, short, or character.

∗ -process=mainColumnName,analysisName,resultName

[,description=string][,symbol=string][,weightBy=columnName]

[,functionOf=columnName[,lowerLimit=value][,upperLimit=value]]

[,head=number][,tail=number][,fhead=fraction][,ftail=fraction]

[,topLimit=value][,bottomLimit=value]

[,position][,offset=value][,factor=value]

[,match=columnName,value=match-value] — This option may be given any num-
ber of times. It specifies creation of a new parameter resultName by processing
column mainColumnName using analysis mode analysisName. The column must
contain numeric data, in general, except for a few analysis modes that take any type
of data (see below). mainColumnName may contain wildcards, in which case the
processing is applied to all matching columns containing numeric data. resultName

may have a single occurence of the string “%s” embedded in it; if so, mainColumn-

Name is substituted. If wildcards are given in mainColumnName, then “%s” must
appear in resultName; in this case, the name of each selected column is substituted.
Similarly, if the description field is supplied, it may contain an embedded “%s”
for which the column name will be substituted.
Recognized values for analysisName are:

· average, rms, sum, standardDeviation, mad — The arithmetic average, the
rms average, the arithmetic sum, the standard deviation, and the mean absolute
deviation. All may be possibly weighted.

· median, drange, qrange — The median value, i.e., the value which is both above
and below 50the quartile-range, which is the range excluding the smallest and
largest 25

· minimum, maximum, spread, smallest, largest — The minimum value, max-
imum value, spread in values, smallest value (minimum absolute value), and
largest value (maximum absolute value). For all except spread, the position

and functionOf qualifiers may be given to obtain the value in another column
when mainColumnName has the extremal value; the functionOf qualifer may
name a string column.

· first, last — The values in the first and last rows of the page. Will accept
non-numeric data.

· pick — The first value within the filter. Will accept non-numeric data.

128

· count — The number of values in the page.

· baselevel, toplevel, amplitude — Waveform analysis parameters from his-
togramming the signal amplitude. baselevel is the baseline, toplevel is the
height, and amplitude is height above baseline.

· risetime, falltime, center — The rise and fall times from the 10%-90%
and 90%-10% transitions. center is the midpoint between the first 50% rising
edge and the first following 50% falling edge after rising above 90% amplitude.
Requires specifying a independent variable column with functionOf.

· fwhm, fwtm, fwha, fwta — Full-widths of the named column as a function of the
independent variable column specified with functionOf. The letters ’h’ and ’t’
specify Half and Tenth amplitude widths, while ’m’ and ’a’ specify Maximum
value or Amplitude over baseline.

· zerocrossing — Zero-crossing point of the column named with functionOf of
the column mainColumnName.

· sigma — The standard deviation over the square-root of the number of points.
This is an estimate of the uncertainty in the mean value.

· slope, intercept, lfsd — The slope and intercept of a linear fit. The
functionOf qualifier must be given to specify the quantity to fit against. lfsd

is the Linear-Fit-Standard-Deviation, which is the standard deviation of the fit
residuals.

Qualifiers for this switch are:

· description=string, symbol=string — Specify the description and symbol
fields for the new column.

· weightBy=columnName — Specifies the name of a column to weight values from
column mainColumnName by before computing statistics.

· functionOf=columnName — Specifies the name of a column that mainColumn-

Name is to be considered a function of for computing widths, zero-crossings,
etc.

· topLimit=value, bottomLimit=value — Specifies winnowing of rows so
that only those with mainColumn values above the topLimit or below the
bottomLimit are included in the computations.

· lowerLimit=value, upperLimit=value— If functionOf is given, specifies win-
nowing of rows so that only rows for which the independent column data is above
the lowerLimit and/or below the upperLimit are included in computations.

· head=number, fhead=fraction — Specifies taking the head of the data prior to
processing. head gives the number of points keep, while fhead gives the fraction
of the points to keep. If number or fraction is less than 0, thenthe head points
are deleted and the other points are kepts. If head and tail are both used, head
is performed first. gives the fraction of the points to clip.

· tail=number, ftail=fraction — Specifies taking the tail of the data prior to
processing. tail gives the number of points keep, while ftail gives the fraction
of the points to keep. If number or fraction is less than 0, thenthe tail points are
deleted and the other points are kepts. If head and tail are both used, head is
performed first.

· position — For minimum, maximum, smallest, and largest analysis modes,
specifies that the results should be the position at which the indicated value

129

occurs. This position is the corresponding value of in column named with
functionOf.

· offset=value, factor=value — Specify an offset and factor for modifying data
prior to processing. By default, the offset is zero and the factor is 1. The
equation is x → f ∗ (x + o).

· match=controlName, value=match-value— Specify the match column and the
match value (may contain wildcard).

– Miscellaneous:

∗ -ifis={column | parameter | array},name[,name...]
-ifnot={column | parameter | array},name[,name...]
— These options allow conditional execution. If any column that is named under a
ifis option is not present, execution aborts. If any column that is named under a
ifnot option is present, execution aborts.

∗ -description=[text=string][,contents=string] — Specifies the description
fields for the SDDS dataset. Use of this feature is disparaged as these fields are
not manipulated by any tools. Use of string parameters is suggested.

∗ -summarize — Specifies that a summary of the processing be printed to the screen.

∗ -verbose — Specifies that informational printouts be provided during processing.

∗ -noWarnings — Specifies suppression of warning messages.

∗ -delete={columns | parameters | arrays},matchingString[,...],
-retain={columns | parameters | arrays},matchingString[,...] — These
options specify wildcard strings to be used to select entities (i.e., columns, param-
eters, or arrays) that will respectively be deleted or retained (i.e., that will not or
will appear in the output). The selection is performed by determining which input
entities have names matching any of the strings. If retain is given but delete is
not, only those entities matching one of the strings given with retain are retained.
If both delete and retain are given, then all entities are retained except those that
match a delete string without matching any of the retain strings.

• author: M. Borland, ANL/APS.

130

4.53 sddspseudoinverse

• description: sddspseudoinverse views the numerical tabular data of the input file as
though it formed a matrix, and produces an output file with data corresponding to the
pseudo-inverse of the input file matrix. At present the pseudo-inversion is done using a
singular value decomposition. Other methods may be made available in the future.

Command line options specifies the number of singular values to be used in the inversion
process.

The column names for the output file are generated either from the data in a selected string
column in the input file, from the value of the command line option -root, or from an internal
default.

The column names of the input file are collected and made into a string column in the output
file.

• examples: The matrix of R12 values for some accelerator beamline called LTP is stored in
file LTP.R12. The pseudo-inverse (useful for trajectory correction), named LTP.InvR12, is
created with:

sddspseudoinverse LTP.R12 LTP.InvR12

• synopsis:

sddspseudoinverse [-pipe=[input][,output]] inputFile outputFile

[-minimumSingularValueRatio=value | -largestSingularValues=number]

[-oldColumnNames=string] [{-root=string [-digits=integer] |

-newColumnNames=column}] [-umatrix=file] [-vmatrix=file] [-removeDCVectors]

[-weights=file,name=columnName,value=columnName] [-symbol=string] [-ascii]

[-verbose] [-noWarnings]

• files: The input file contains the data for the matrix to be inverted. The output file contains
the data for the inverted matrix. If only one file is specified, then the input file is overwritten
by the output.

Multiple data pages of the input file will be processed and written to the outptu file if all
the data pages of the input file have the same number of rows. The processing will stop at
the first data page which doesn’t have the same number of rows as that of the first page. If
applicable, the string column selected to generate column names for the output file is assumed
to be the same in all input data sets. The string columns of only the first data set are read.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -minimumSingularValueRatio=realValue — Used to remove small singular values
from the calculation. The smallest singular value retained for the inverse calculation
is determined by multiplying this ratio value with the largest singular value of the input
matrix.

– -largestSingularValues=integer — Used to remove small singular values from the
calculation. The largest integer singular values are kept.

131

– -oldColumnNames=string — A string column of name string is created in the output
file, containing the column names of the input files as string data. If this option is not
present, then the default name of “OldColumnNames” is used for the string column.

– -root=string — A string used to generate columns names for the output file data. The
first data column is named “string000”, the second, “string001”, etc.

– -digits=integer — minimum number of digits used in the number appended to root

of the output file column names. (Default value is 3).

– -newColumnNames=string — Specifies a string column of the input file which will be
used to define column names of the output file.

– -umatrix=file — writes the u column-orthogonal matrix to a file. The SVD decom-
position follows the convention A = uSvT . The “transformed” x are vT x, and the
“transformed” y are uT y.

– -vmatrix=file — writes the v column-orthogonal matrix to a file.

– -removeDCVectors — Removes the eigenvectors which have an overall DC component.

– -weights=file,name=columnName,value=columnName] — Specifies a file which con-
tains weights for each of the rows of the matrix, thus giving different weights for solv-
ing the linear equations of the pseudoinverse problem. The equation that is solved is
wAx = wy where w is the weight vector turned into a diagonal matrix and A is the input
matrix. The matrix solution returned is (wA)Iw where ()I means taking the pseudoin-
verse. The u matrix now has a different interpretation: the “transformed” x are vT x, as
before, but the “transformed” y are uT wy.

– -symbol=string — The string for the symbol field of data column definitions.

– -ascii — Produces an output in ascii mode. Default is binary.

– -verbose — Prints out incidental information to stderr.

• author: L. Emery ANL

132

4.54 sddsquery

• description:

sddsquery prints a summary of the SDDS header for a data set. It also prints bare lists of
names of defined entities, suitable to use with shell scripts that need to detect the existence
of entities in the data set. Finally, it will create an SDDS file containing information about
what is in the header.

• examples: Get information on the contents of a file:

sddsquery APS.twi

Get a list of the column names only:

sddsquery APS.twi -columnList

Get a list of the column names into a shell variable

set names = ‘sddsquery APS.twi -columnList -delimiter=" "‘

Get a list of the column names into an SDDS file

sddsquery APS.twi -columnList -sddsOutput=APS.twi.names

• synopsis:

sddsquery SDDSfilename [SDDSfilename...] [-sddsOutput[=filename]]

[{-arrayList | -columnList | -parameterList | -version}]
[-delimiter=delimitingString] [-appendUnits[=bare]] [-readAll]

• files: The input filenames may name arbitrary SDDS files.

If -sddsOutput is given, the output normally contains one page for each data class (i.e., array,
parameter, and column). The following elements are defined:

– Columns (all string type):

∗ Name — The name of the element.

∗ Units — The units of the data.

∗ Symbol — The symbol for the element.

∗ Format — The format string for the element (e.g., “%f”).

∗ Type — The SDDS data type name (e.g., double, float, etc.).

∗ Description — The description for the element.

∗ Group — The group name (for array elements only).

– Parameters:

∗ Class — The SDDS class for the present page.

∗ Filename — The filename being described by the present page.

133

• switches:

Normal operation of sddsquery results in a printout summarizing the header of each file. If
one of the options is given, however, this printout will not appear. Instead, the selected list
of names appears for each file.

– sddsOutput[={\em filename}]] — Requests that output be delivered in SDDS proto-
col. If no filename is given, the output is delivered to the standard output.

– arrayList — In non-SDDS output mode, requests that a list of array names be printed
to the standard output, one name per line. In SDDS output mode, requests that only
array information be provided.

– columnList — In non-SDDS output mode, requests that a list of column names be
printed to the standard output, one name per line. In SDDS output mode, requests that
only column information be provided.

– parameterList — In non-SDDS output mode, requests that a list of parameter names
be printed to the standard output, one name per line. In SDDS output mode, requests
that only parameter information be provided.

– -version — Requests that the SDDS version number of the file be printed to the
standard output. Valid in non-SDDS output mode only.

– -delimiter=delimitingString— Requests that listed items be separated by the given
string. By default, the delimiter is a newline. Valid in non-SDDS output mode only.

– -appendunits[=bare] — Requests that the units of each item be printed directly fol-
lowing the item name. Valid in non-SDDS output mode only. If the bare qualifier is
not given, then the units are enclosed in parentheses.

– -readAll — Forces sddsquery to read the entire file. On some operating systems this
is necessary when querying compressed files to prevent “Broken Pipe” errors. For large
files, use of this option will make sddsquery slower.

• see also:

– Data for Examples (see 3.3)

• author: M. Borland, ANL/APS.

134

4.55 sddsregroup

• description: sddsregroup swaps the row indexing and page indexing of data in an SDDS
file. That is, the ith row of all data pages in the input file are collected and made into the
ith data page of the output file.

• examples: The file bpm.sdds contain the beam position monitor (bpm) readback as a func-
tion of time for a series of consecutive bpms in a beamline. The defined columns are Time
and x. The parameters are bpmIndex. The file bpm.sdds is regrouped to produce data sets of
x vs bpmIndex for each time value. The output is suitable to plot as a movie with sddsplot.

sddsregroup bpm.sdds bpm.movie -newParameters=Time -newColumns=bpmIndex

• synopsis:

sddsregroup [-pipe=[input][,output]] inputFile outputFile

[-newParameters=oldColumnName,...] [-newColumns=oldParameterName,...]

[-warning] [-verbose]

• files: The input file contains the data sets to be regrouped. The output file contains the
regrouped data. If only one file is specified, then the input file is overwritten by the output.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -newParameters — specifies which columns of the input file will become parameters in
the output file. By default no new parameters are created, and all columns of the input
file are transfered to the output file.

– -newColumns — specifies which parameters of the input file will become columns in
the output file. The columns will necessarily be duplicated in all pages. By default all
parameters values are lost.

• author: L. Emery ANL

135

4.56 sddsrowstats

• description: sddsrowstats analyzes data across columns on a row-by-row basis to find
minima, maxima, averages, standard-deviations, etc. The output is a copy of the input with
additional columns that contain the desired statistics.

• examples: Find the mean x and y orbits from PAR beam-position-monitor data collected
with one set of x and y values (in 32 columns) per row.

sddsrowstats par.bpm par.bpm1 -mean=xMean,P?P?x -mean=yMean,P?P?y

• synopsis:

sddsrowstats [-pipe=[input][,output]] [input] [output] [-nowarnings]

[-mean=newName,[,limitOps],columnNameList]

[-rms=newName,[,limitOps],columnNameList]

[-median=newName[,limitOps],columnNameList]

[-minimum=newName[,limitOps],columnNameList]

[-maximum=newName[,limitOps],columnNameList]

[-standardDeviation=newName[,limitOps],columnNameList]

[-sigma=newName[,limitOps],columnNameList]

[-mad=newName[,limitOps],columnNameList]

[-sum=newName[,limitOps][,power=<integer>],columnNameList]

[-drange=newName[,limitOps],columnNameList]

[-qrange=newName[,limitOps],columnNameList]

[-smallest=newName[,limitOps],columnNameList]

[-largest=newName[,limitOps],columnNameList]

[-count=newName[,limitOps],columnNameList]

where columnList is a comma-separated list of one or more optionally wildcarded names and
limitOps is of the form [topLimit=value,][bottomLimit=value].

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -mean, -rms, median, minimum, maximum, standardDeviation, sigma, mad, drange,
qrange, smallest, largest, count — Compute indicated statistic across the columns
specified in columnList. If limitOps are given, then values above the topLimit or below
the bottomLimit are excluded from computations. sigma is the standard deviation of
the mean. mad is the mean-absolute-deviation. smallest (largest) is the minimum
(maximum) absolute value. drange and qrange are the decile and quartile ranges,
respectively.

– -sum=newName[,power=integer],columnNameList — Specifies creation of a new col-
umn newName containing the row-by-row sums of the columns specified in columnList.
The values are summed after being raised to the given power, which is 1 by default.

• see also:

– Data for Examples (see 3.3)

– sddschanges (4.12)

136

– sddsenvelope (4.28)

– sddsprocess (4.52)

• author: M. Borland, ANL/APS.

137

4.57 sddsrunstats

• description: sddsrunstats computes running or blocked statistics on SDDS tabular data.

• examples: Smooth PAR x beam-position-monitor data by using a sliding window 32 points
long:

sddsrunstats par.bpm par.bpm.rs -mean=Time,P?P?x

Same, but use nonoverlapping window for averages:

sddsrunstats par.bpm par.bpm.rs -mean=Time,P?P?x -noOverlap

• synopsis:

sddsrunstats [-pipe[=input][,output]] [input] [output] [-points=integer |

-window=column=column,width=value] [-noOverlap] [-partialOk]

[-mean=[limitOps],columnNameList] [-minimum=[limitOps],columnNameList]

[-maximum=[limitOps],columnNameList]

[-standardDeviation=[limitOps],columnNameList]

[-sigma=[limitOps],columnNameList]

[-sum=[limitOps][,power=integer],columnNameList]

[-sample=[limitOps],columnNameList]

where columnNameList is a comma-separated list of one or more optionally wildcarded names
and limitOps is of the form [topLimit={\em value},][bottomLimit={\em value}].

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– points=integer — The number of points in the statistics window for each output row.
If non-overlapping statistics are used, the last output row will be computed from fewer
than the specified number of points if the input file number of rows is not a multiple of
the specified number of points.

– window=column=column,width=value — Specifies a column to use for determining
statistics row boundaries. For example, one might want statistics for 60 second blocks
of data when the data is not uniformly sampled in time. In this case, the column would
be “Time” (say) and the width 60.

– partialOk — Specifies that sddsrunstats should do computations even if the number
of available rows is less than specified. By default, such data is simply ignored.

– -noOverlap — Specifies non-overlapping statistics. The default is to compute running
statistics with a sliding window.

– -mean=[limitOps],columnNameList

-minimum=[limitOps],columnNameList

-maximum=[limitOps],columnNameList

-standardDeviation=[limitOps],columnNameList

-sigma=[limitOps],columnNameList — Specifies computation of the indicated statis-
tic for the columns matching columnNameList (see above). The standard deviation
is N-1 weighted. Sigma is the standard deviation of the sample mean. limitOps (see
above for syntax) allows filtering the points in each window to exclude values above the
topLimit or below the bottomLimit.

138

– -sum=[limitOps][,power=integer],columnNameList — Specifies computation of a
general sum of powers of values. For example, to get the sum of squares you’d use
power=2. columnNameList and limitOps are as for the last item.

– -sample=[limitOps],columnNameList — Results in extraction of a single set of values
per group, namely, the first value in the group that passes the limitOps criteria.

• see also:

– Data for Examples (see 3.3)

– sddssmooth (4.63)

• author: M. Borland, ANL/APS.

139

4.58 sddssampledist

• description: sddssampledist provides for psuedo-random sampling of probability distribu-
tions. It also provides nonrandom sampling, using Halton sequences.

• example: Draw some random samples from a normal (gaussian) distribution, G(z), shifted
to have a sigma of 10 and centroid of 5.

sddssampledist gaussian.sdds samples.sdds -samples=100

-columns=indep=z,df=G,output=zSample,factor=10,offset=5

• synopsis:

sddssampledist [input] [output] [-pipe=[in][,out]]

-columns=independentVariable=name,cdf=CDFName | df=DFName

[,output=name][,units=string][,factor=value]

[,offset=value][,datafile=filename]

[,haltonRadix=primeNumber[,randomize[,group=groupID]]] [-columns=...]

[-samples=integer] [-seed=integer]

• files:

input is the default input file for distribution functions (DFs) and cumulative distribution
functions (CDFs). input need not be given if all -column options give the datafile qualifier.

output contains the samples. The names of the sampled data are by default the same as the
names of the independent variable from the -column options. These names may be changed
by the output qualifier of that option.

• switches:

– pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– columns=independentVariable=name,{cdf=CDFName | df=DFName}
[,output=name][,units=string][,factor=value][,offset=value]

[,datafile=filename][,haltonRadix=primeNumber[,randomize[,group=groupID]]]

— Any number this option may be given. Specifies the CDF or DF from which to draw
samples (cdf or df qualifier), as well as the variable that the CDF or DF depends on
(independentVariable qualifier). The samples are values of this variable. output al-
lows specifying the name of the column for the samples, while units allows specifying
the units. factor and offset may be used to perform a simple transformation of the
sample values, according to x → x ∗ f + o. datafile allows specifying an alternate file
as the source for the distribution function data. By default, the data is drawn from
the main input file. haltonRadix allows specifying the radix for generation of a non-
random Halton sequence, which provides a much smoother sampling of the distribution
than does a pseudo-random sequence. The radix should be a small prime number. If
you generate multiple sequences from the same radix, they will be correlated. Hence,
the randomize qualifier should be used to remove the correlations. If there are multiple
column options that should be randomized together (i.e., randomized relative to other
data but not each other), the group qualifier can be used to assign these options to a
specific *integer) group ID.

140

– samples — Specifies the number of samples to generate.

– seed — Specifies the seed for the random number generation. Should be a large, odd
integer. If not given, the system clock is used to generate a seed.

• author: M. Borland, ANL/APS.

141

4.59 sddsselect

• description: sddsselect excludes or includes rows from one file based on the presence of
matching data in another file. It is similar to sddsxref, but unlike that program does not
import data from the second file.

• examples: Use a list of quadrupole names to get just the Twiss parameters are the
quadrupoles:

sddsselect APS.twi quadNames.sdds APSquad.twi -match=ElementName -reuse

where ElementName is a column in both APS.twi and quadNames.sdds giving the name of a
magnet. Use the same file to get the Twiss parameters everywhere but at the quadrupoles:

sddsselect APS.twi quadNames.sdds APSnquad.twi -match=ElementName -reuse

-invert

• synopsis:

sddsselect [-pipe[=input][,output]] [input1] input2 [output]

{-match=columnName1[=columnName2] | -equate=columnName1[=columnName2] }
[-invert] [-reuse[=page][,rows]] [-noWarnings]

• files: input1 is an SDDS file from which rows of data will be selected for inclusion in output.
If input1 contains multiple pages, they are processed separately. input2 is an SDDS file
containing rows of data to use in selecting data from input1. Warning: if output is not given
and -pipe=output is not specified, then input1 will be replaced.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -match=columnName1[=columnName2] — Specifies the names of string columns from
input1 and input2 to compare. If columnName2 is not given, it taken to be the same
as columnName1. Data in columnName is taken from input1 and columnName2 from
input2. For each row in a page of input1, a match for the string in columnName1 is
sought in any row of columnName2. If a match is found, the row is accepted.

– -equate=columnName1[=columnName2] — Identical to -match, except the columns
contain numerical data.

– -invert — Specifies that only rows that have no match or equal should be selected for
output.

– -reuse[=rows][,page]— By default, if input1 contains multiple pages, each is selected
against the corresponding page of input2. In addition, each row of input2 is matched or
equated to only one row of input1. If -reuse=page is given, then each page of input1

is selected against the first page of input2. If -reuse=rows is given, each row of input2

can select any number of rows of input1.

– -noWarnings — Specifies that no warning messages (about, e.g., file length mismatches
or file overwrites) should be issued.

142

• sddsmselect — sddsmselect is a variant of sddsselect that permits multiple -match and
-equate options for more sophisticated cross-referencing. In other respects, the program is
used just like sddsmselect. sddsselect is much faster, however, for single-criterion matching
or equating.

• see also:

– Data for Examples (see 3.3)

– sddsxref (4.69)

• author: M. Borland, ANL/APS.

143

4.60 sddssequence

• description: sddssequence generates an SDDS file with a single page and several columns of
data of arithmetic sequences. An example application is generating values for an independent
variable, whose values can be used by sddsprocess to produce a mathematical function.

• examples: Make a file example.sdds with column Index of type long with 100 rows. The
value of Index in the first row is 1 and is incremented by 1 for each successive row.

sddssequence example.sdds -define=Index -sequence=begin=1,number=100,delta=1

• synopsis:

sddssequence [-pipe=[output]] [<outputfile>]

-define=<columnName>[,<definitionEntries>] [-repeat=<number>]

-sequence=begin=<value>[,number=<integer>][,end=<value>]

[,delta=<value>][,interval=<integer>]

[-sequence=[begin=<value>][,number=<integer>][,end=<value>]

[,delta=<value>][,interval=<integer> ...]

• files: outputfile is the name of the SDDS file containing data generated.

• switches:

– -pipe=[output] — The standard SDDS Toolkit pipe option.

– -define=<columnName>[,<definitionEntries>] — Defines a new column. One
or more -sequence options should follow. Definition entries have the form
fieldName=value where fieldName is the name of any namelist command field (ex-
cept the name field) for a column. The default data type is double. To get a different
type, use type=<typeName>.

Multiple -define options can be used to create mutliple columns, each with their own
set of -sequence options.

– -sequence=begin=<value>[,number=<integer>][,end=<value>]

[,delta=<value>][,interval=<integer>] — Defines the arithmetic sequence for the
data column. More that one sequence option can be given for a column definition, thus
allowing arithmetic sequences of different character in one column. The begin value
must be given in the first sequence option. If any sequence options follows immedi-
ately, a default value equal to the previous end value plus the previous delta value is
used. For the rest of the suboptions, the user must supply (end, delta), (end, number),
or (delta, number). If number isn’t supplied, then the set of start, end, delta must
imply a positive number of rows.

The interval field specifies the number of rows for which the value is frozen within the
sequence. For instance,

sddssequence example.sdds -def=Index,type=long -sequ=beg=1,num=10,end=10,inte=2

sddsprintout -col=Index example.sdds

produces

144

Printout for SDDS file example.sdds

Index

1

1

3

3

5

5

7

7

9

9

– -repeat=<number> — Repeats the sequence identically for the given number of times.

• see also:

• author: M. Borland, ANL/APS.

145

4.61 sddsshiftcor

• description: sddsshiftcor computes correlation coefficients and correlation significance
between column data as a function of shifting of the data columns relative to each other. The
correlation coefficient between columns i and j is defined as

Cij =
〈xixj〉

√

〈x2
i 〉〈x2

j 〉

If Cij = 1, then the variables are perfectly correlated, whereas if Cij = −1, they are perfectly
anticorrelated. In some cases, signals are correlated but with a time-lag. Hence, computing

Cij

as a function of the shifting of one of the signals may reveal relationships that are not apparent
in a simple correlation, such as might be done with sddscorrelate.

• synopsis:

sddsshiftcor [-pipe=[input][,output]] [inputFile] [outputFile]

-with=columnName

[-scan[=start=startShift][,end=endShift][,delta=deltaShift]]

[-columns=columnNames] [-excludeColumns=columnNames] [-rankOrder]

[-stDevOutlier[=limit=factor][,passes=integer]] [-verbose]

• files: inputFile is an SDDS file containing two or more columns of data. outputFile contains
one column (ShiftedBy) for the amount shifted, plus one column for each analyzed column
in inputFile. The latter each contains the correlation coefficient with the shifted signal for
the given shift value.

• switches:

– -pipe=[input][,output] — The standard SDDS Toolkit pipe option.

– -with=columnName — Specifies the column to be shifted, which is correlated with the
other columns.

– -scan[=start=startShift][,end=endShift][,delta=deltaShift] — Specifies the
amount to shift and the step size. The values are all integers. By default startShift=-10,
endShift=10, and deltaShift=1

– -columns=columnNames— Specifies the names of columns to be included in the analysis.
A comma-separated list of optionally wildcard-containing names may be given.

– -excludeColumns=columnNames — Specifies the names of columns to be excluded from
the analysis. A comma-separated list of optionally wildcard-containing names may be
given.

– -rankOrder — Specifies computing rank-order correlations rather than standard corre-
lations. This is considered more robust that standard correlations.

– -stDevOutlier[=limit=factor][,passes=integer] — Specifies standard-deviation-
based outlier elimination on each pair of columns prior to computation of the correlation
coefficient. Any pair of values is ignored if one or both values are outliers relative to the

146

column from which they come. The limit qualifier specifies the allowed deviation from
the mean in standard deviations; the default is 1. The passes qualifier specifies how
many times the outlier elimination (including recomputation of the mean and standard
deviation) is performed; the default is 1.

• see also:

– sddscorrelate (4.22)

• author: M. Borland, ANL/APS.

147

4.62 sddsslopes

• description: sddsslopesmakes straight line fits of column data of the input file with respect
to a selected column used as independent variable. The output file contains a one-row data set
of slopes and intercepts for each data set of the input file. Errors on the slope and intercept
may be calculated as an option.

• examples: The file corrector.sdds below contains beam position monitors (bpms) readbacks
as a function of corrector setting. The defined columns are CorrectorSetpoint and the series
bpm1, bpm2, etc. The bpm response to the corrector setpoints are calculated with the use of
sddsslopes:

sddsslopes corrector.sdds corrector.slopes

-independentVariable=CorrectorSetpoint -columns=’bpm*’

where all columns that match with the wildcard expression bpm* is selected for fitting.

• synopsis:

sddsslopes [-pipe=[input][,output]] inputFile outputFile

-independentVariable=parameterName [-range=lower,upper]

[-columns=listOfNames] [-excludeColumns=listOfNames] [-sigma[=generate]]

[-residual=file] [-ascii] [-verbose]

• files: The input file contains the tabular data for fitting. Multiple data sets are processed
one at a time. For optional error processing, additional columns of sigma values associated
with the data to be fitted must be present. These sigma column must be named nameSigma

or Sigmaname, the former one being searched first.

The output file contains a one-row data set for each data set in the input file. The columns
defined have names such as nameSlope, and nameIntercept where name is the name of the
fitted data. If only one file is specified, then the input file is overwritten by the output. A
string column called IndenpendentVariable is defined containing the name of the indepedent
variable.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -independentVariable=parametername — name of independent variable (default is
the first valid column).

– -range=lower,upper — The range of the independent variable where the fit is calcu-
lated. By default, all data points are used.

– -columns=listOfNames — columns to be individually paired with independentVariable
for straight line fitting.

– -excludeColumns=listOfNames — columns to exclude from fitting.

– -sigma[=generate] — calculates errors by interpreting column names nameSigma or
Sigmaname as sigma of column name. If these columns don’t exist then the program
generates a common sigma from the residual of a first fit, and refits with these sigmas.
If option -sigma=generate is given, then sigmas are generated from the residual of a
first fit for all columns, irrespective of the presence of columns nameSigma or Sigmaname.

148

– -residual=file— Specifies an output file into which the residual of the fits are written.
The column names in the residual file are the same as they appear in the input file.

– -ascii — make output file in ascii mode (binary is the default).

– -verbose — prints some output to stderr.

• author: L. Emery ANL

149

4.63 sddssmooth

• description:

sddssmooth smooths columns of data using multipass nearest-neighbor averaging and/or
despiking. Any number of columns may be smoothed. The smoothed data may be put in
place of the original data, or included as a new column.

Nearest-neighbor averaging involves repeatedly replacing each point by the average of its N
nearest-neighbors; this is the type of smoothing that is done if nothing is specified. Despiking
consists of replacing the most extreme of N nearest neighbors with the average of the same
points; the most extreme point is the one with the largest mean absolute difference from the
other points.

• examples: Smooth data in a Fourier transform:

sddssmooth data.fft data.peaks -column=FFTamplitude

• synopsis:

sddssmooth [-pipe=[input][,output]] [inputfile] [outputfile]

-columns=name[,name...] [-points=oddInteger] [-passes=integer]

[-SavitzkyGolay=left,right,order,[derivativeOrder]]

[-despike[=neighbors=integer][,passes=integer]] [-newColumns]

[-differenceColumns]

• files:

inputFile contains the data to be smoothed. outputFile contains all of the array and parameter
data from inputFile, plus at least one column for every column in inputFile. Columns that
are not smoothed will appear unchanged in outputFile. If inputFile contains multiple pages,
each is treated separately and is delivered to a separate page of outputFile.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -columns=columnName[,columnName... — Specifies the names of the column to
smooth. The names may include wildcards.

– -points=oddInteger — Specifies the number of points to average to create a smoothed
value for each point. The default is three, which implies replacing each point by the
average of itself and its two nearest neighbors.

– -passes=integer — Specifies the number of nearest-neighbor-averaging smoothing
passes to make over each column of data. The default is 1. If 0, no such smoothing
is done. In the limit of an infinite number of passes, every point will tend toward the
average value of the original data. If -despike is also given, then despiking occurs first.

– -SavitzkyGolay=left,right,order,[derivativeOrder] — Specifies smoothing by
use of a Savitzky-Golay filter, which involves fitting a polynomial of order order through
left+right+1 points. Optionally, takes the derivativeOrder-th derivative of the data. If
this option is given, the nearest-neighbor-averaging smoothing is not done. If -despike
is also given, then despiking occurs first.

150

– -despike[=neighbors=integer][,passes=integer]— Specifies smoothing by despik-
ing, as described above. By default, 4 nearest-neighbors are used and 1 pass is done. If
this option is not given, no despiking is done.

– -newColumns — Specifies that the smoothed data will be placed in new columns, rather
than replacing the data in each column with the smoothed result. The new columns are
given names of the form columnNameSmoothed, where columnName is the original name
of a column.

– -differenceColumns — Specifies that additional columns be created in the output file,
containing the difference between the original data and the smoothed data. The new
columns are given names of the form columnNameUnsmooth, where columnName is the
orignal name of the column.

• see also:

– sddsdigfilter (4.25)

• author: M. Borland, ANL/APS.

151

4.64 sddssort

• description:

sddssort sorts the tabular data section of a data set by the values in named columns.
Any number of columns may be involved in the sort, and sorting order may be individually
specified.

• examples:

Sort the APS Twiss file into alphabetical order by element name:

sddssort APS.twi APS.twi.sorted -column=ElementName

Same, but keep only one instance of each row with the same element name:

sddssort APS.twi APS.twi.sorted -column=ElementName -unique

• synopsis:

sddssort [-pipe=[input][,output]] [SDDSinput] [SDDSoutput]

-column=name[,{increasing | decreasing}] [-column...] [-unique[=count]]

[-noWarnings]

• files:

SDDSinput is an SDDS file to be sorted. If it contains multiple data pages, they are treated
separately. Warning: if SDDSoutput is not given and -pipe=output is not specified, then
SDDSinput will be replaced.

• switches:

– -pipe=[input][,output] — The standard SDDS pipe option.

– -column=name[,{increasing | decreasing}] — Requests that the column name be
used to order the rows of each tabular data section. Each subsequent column request
specifies a subsort of the ordering produced by the previous requests. The increasing

and decreasing keywords may be given to specify the desired ordering of the (sub)sort,
with increasing order being the default.

– -unique[=count] — Specifies that for any rows that are identical in the sort column
values, only the first should be included in the output file. If the count qualifier is
given, then a count of the number of identical rows is supplied in a column called
IdenticalCount.

– -noWarnings — Suppresses warning messages.

• author: M. Borland, ANL/APS.

152

4.65 sddssplit

• description:

sddssplit breaks up an SDDS file into one or more separate files, each containing only a
single page of data. This may be useful in those instances where a tool or program only
processes the first page of a file.

• examples:

Split a Twiss parameter file into separate files:

sddssplit APS.twi

• synopsis:

sddssplit {-pipe[=input] | inputFile} [{-binary | -ascii}] [-digits=number]

[-rootname=string] [-extension=string] [-nameParameter=paramName]

[-firstPage=number] [-lastPage=number] [-interval=number]

• files: inputFile is an SDDS file to be split. By default, the output files are created by
appending the page number to a “rootname” and adding an extension. That is, the output
files have names rootnamePage.extension. The default rootname is the name of inputFile,
while the default extension is “sdds”. By default, Page is printed using “less the extension.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -binary, -ascii — Specifies binary or ASCII output, with binary being the default.

– -digits=number — Specifies the number of digits to be used in creating filenames.
Leading zeros are included.

– -rootname=string — Specifies the rootname to be used in creating filenames.

– -extension=string — Specifies the extension to be used in creating filenames.

– -nameParameter=paramName— Specifies that instead of composing names for the output
files, sddssplit take the names from the string parameter paramName in the input file.
This provides a limited capability to retrieve the original files from a file made with
sddscombine. Note that if the named parameter takes the same value on two pages, the
file created for the first of the pages will be overwritten.

– -firstPage=number — Specifies the first page of data to use.

– -lastPage=number — Specifies the last page of data to use.

– -interval=number — Specifies the interval between pages that are used.

• see also:

– sddsbreak (4.10)

– sddscombine (4.17)

• author: M. Borland, ANL/APS.

153

4.66 sddstimeconvert

• description: sddstimeconvert does conversions between calendar time in terms of (for
example) day, month, and year, and “time-since-epoch”. The latter is the time in seconds
since a system-defined reference time (e.g., 0:00 on January 1, 1970).

• examples: Convert column data broken down as day, month, year, and hour to seconds-
since-epoch:

sddstimeconvert input.sdds output.sdds

-epoch=column,Time,year=TheYear,month=TheMonth,day=DayOfMonth,hour=HourOfDay

where TheYear, TheMonth, DayOfMonth, and HourOfDay are the names of the columns in the
input file and Time is the column to be created containing the time-since-epoch.

• synopsis:

sddstimeconvert [inputFile] [outputFile] [-pipe[=input][,output]]

[-breakdown={column | parameter},timeName[,year=newName]
[,julianDay=newName][,month=newName][,day=newName][,hour=newName][,text=newName]]

[-epoch={column | parameter},newName,year=name
[,julianDay=name | month=name,day=name],hour=name]

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -breakdown={column | parameter},timeName[,year=newName]
[,julianDay=newName][,month=newName][,day=newName][,hour=newName]

[,text=newName] — Specifies conversion of the column or parameter data named time-

Name to year, Julian day, month, day, hour, and/or a text string. timeName contains
the time expressed as seconds-since-epoch. Any number of these options may be given.

– -epoch={column | parameter},newName,year=name,
[julianDay=name | month=name,day=name],hour=name — Specifies conversion of col-
umn or parameter data given as year, Julian day or month/day, and hour to seconds-
since-epoch, with the result being placed in newName.

• notes: The hour data as used or created by sddstimeconvert contains the floating-point
time-of-day in hours. That is, the minutes and seconds are folded into the hour value.

Year values must be the full four-digit year; e.g., year 99 is not 1999, but rather 99 AD.

• author: M. Borland, ANL/APS.

154

4.67 sddstranspose

• description: sddstranspose views the numerical tabular data of the input file as though
it formed a matrix, and produces an output file with data corresponding to the transpose of
the input file matrix. In other words, the columns of tabular data of the input file become
rows in the output file. String column data are not transposed but are stored as string
parameters in the output file. Operating on the output file with a second sddstranpose

command essentially recovers the original input file.

The column names for the output file are generated either from the data in a selected string
column in the input file, from the value of the command line option -root, or from an internal
default.

The column names of the input file are collected and made into a string column in the output
file.

• examples: The data in file LTP.R12 (matrix of R12’s in a beamline called LTP, say) is
transposed to give file LTP.R12.trans:

sddstranspose LTP.R12 LTP.R12.trans

• synopsis:

sddstranspose [-pipe=[input][,output]] inputFile outputFile

[-oldColumnNames=string] [{-root=string [-digits=integer] |

-newColumnNames=column}] [-symbol=string] [-ascii] [-verbose]

• files: The input file contains the data for the matrix to be transposed. The output file
contains the data for the transposed matrix. If only one file is specified, then the input file is
overwritten by the output.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -oldColumnNames=string — A string column of name string is created in the output
file, containing the column names of the input files as string data. If this option is not
present, then the default name of “OldColumnNames” is used for the string column.

– -root=string — A string used to generate columns names for the output file data. The
first data column is named “string000”, the second, “string001”, etc. If the input
file has only one row, the the root name alone (with no digits following) is used for the
column name.

– -digits=integer — minimum number of digits used in the number appended to root

of the output file column names. (Default value is 3).

– -newColumnNames=string — Specifies a string column of the input file which will be
used to define column names of the output file.

– -symbol=string — The string for the symbol field of data column definitions.

– -ascii — Produces an output in ascii mode. Default is binary.

– -verbose — Prints out incidental information to stderr.

• author: L. Emery ANL

155

4.68 sddsvslopes

• description: sddsvslopes makes straight line fits of vectorized data in the input file with
respect to a selected parameter used as independent variable. The simplest example of vector-
ized data is a data set with one parameter and two columns, one string column of rootnames
and one numerical column of data. The fitting is looped over rows across all the data sets
in the input file (using a selected parameter as the independent vairable). The output file
contains vectorized slopes and intercepts data for each column specified in the input file.

• examples: The file corrector.sdds contains vectorized beam position monitor (bpm) read-
backs as a function of corrector setting. The defined parameter is CorrectorSetpoint. The
defined columns are Rootname and x. Each row of the data set correspond to a different
bpm. The bpm response to the corrector setpoints are calculated with

sddsvslopes corrector.sdds corrector.vslopes

-independentVariable=CorrectorSetpoint -columns=x

• synopsis:

sddsvslopes [-pipe=[input][,output]] inputFile outputFile

-independentVariable=parametername [-columns=listOfNames]

[-excludeColumns=listOfNames] [-sigma[=generate]] [-verbose]

• files: The input file contains the tabular data for fitting. The column Rootname must be
present.

The output file contains one data set of vectorized slopes and intercept data. The Rootname
and Index columns from the input file is transfered to the output file. In the column Index
doesn’t exist in the input file, then it is created in the output file anyway. The column names
are nameSlope, and nameIntercept where name is the name of the fitted data. If only one
file is specified, then the input file is overwritten by the output. A string parameter called
IndenpendentVariable is defined containing the name of the indepedent variable.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -independentVariable=parametername — name of independent variable (default is
the first valid column)

– -columns=listOfNames — columns to be individually paired with independentVariable
for straight line fitting

– -excludeColumns=listOfNames — columns to exclude from fitting

– -sigma[=generate] — calculates errors by interpreting column names nameSigma or
Sigmaname as sigma of column name. If these columns don’t exist then the program
generates a common sigma from the residual of a first fit, and refits with these sigmas.
If option -sigma=generate is given, then sigmas are generated from the residual of a first
fit for all columns, irrespective of the presence of columns nameSigma or Sigmaname.

– -ascii — make output file in ascii mode (binary is the default)

– -verbose — prints some output to stderr

• author: L. Emery ANL

156

4.69 sddsxref

• description: sddsxref creates a new data set by adding selected rows from one data set
to another data set. The rows are selected by matching the string or numeric values in a
specified column that is present in both of two pre-existing data sets. The user may specify
which columns of the second data set to take and which to leave. The user may also transfer
parameter and array data.

• synopsis:

sddsxref [-pipe[=input][,output]] [input] [xRefFile] [output]

[-equate=columnName | -match=columnName] [-reuse[=rows][,page]] [-fillIn]

[-take=columnName,...] [-leave=columnName,...] [-transfer={parameter |

array},name[,name...] [-ifis={column | parameter | array},name[,name...]
[-ifnot={column | parameter | array},name[,name...]

• files: input is the data set to which data is being added. xRefFile is the data set from which
data is being taken. Warning: if output is not given and if -pipe=out is not specified, input

is overwritten. For pipe input, the first file listed is taken to be xRefFile. For pipe input and
output, the only file listed is xRefFile.

• switches:

– -equate=columnName, -match=columnName— These options specify the name of a col-
umn that exists in both input and xRefFile. For match, the column must contain string
data, while for the equate the column must contain numeric data. For each row in
input, sddsxref searches xRefFile to find the first row for which the match column is
identical or the equate column is equal, as appropriate. This row is the one from which
any data is taken for addition to the row in input. If neither of these options is given,
then rows are taken sequentially from xRefFile for each row of input.

– -reuse[=rows][,page] — By default, each row from xRefFile is matched to one row in
input. If -reuse=rows is given, each row from xRefFile may be matched to any number
of rows in input. Also by default, each page of input is matched with the corresponding
page of xRefFile. If -reuse=page is given, then each page of input is matched anew to
the first page of xRefFile. The two qualifiers may be given together.

– -fillIn — Normally if there is no match in xRefFile for a row in input, that row will
not appear in output. If -fillIn is given, the row will appear, but the values for the
columns that are being transferred from xRefFile will be filled with zeros and empty
strings, as appropriate.

– -take=columnName,..., -leave=columnName,...— These options specify which
columns of xRefFile to extract from a matching or equal row of xRefFile for addition to
a row of input. Wildcards may be given in the column names. By default, all columns
not in input are taken. If take is employed, only the named columns will be taken. In
either case, no column specified under leave will be taken. -leave=* causes no columns
to be taken.

– -transfer={parameter | array},name[,name...] — This option, which may be
given multiple times, specifies the names of parameters and arrays to be transfered.
Wildcards are not presently supported in this option.

157

– -ifis={column | parameter | array},name[,name...], -ifnot={column
| parameter | array},name[,name...] — These options allow conditional execu-
tion. If any column that is named under a ifis option is not present, execution aborts.
If any column that is named under a ifnot option is present, execution aborts.

• sddsmxref — sddsmxref is a variant of sddsxref that permits multiple -match and -equate

options for more sophisticated cross-referencing. In other respects, the program is used just
like sddsmxref. sddsxref is much faster, however, for single-criterion matching or equating.

• see also:

– Data for Examples (see 3.3)

– sddsselect (4.59)

• author: M. Borland, ANL/APS.

158

4.70 sddszerofind

• description:

sddszerofind finds the locations of zeroes in a single column of an SDDS file. This is done
by finding successive rows for which a sign change occurs in the “dependent column”, or any
row for which an exact zero is present in this column. For each of the “independent columns”,
the location of the zero is determined by linear interpolation. Hence, the program is really
interpolating multiple columns at locations of zeros in a single column. This single column is
in a sense being looked at as a function of each of the interpolated columns.

• examples: Find zeroes of a Bessel function, J0(z):

sddszerofind J0.sdds J0.zero -zero=J0 -column=z

Find zeroes of a Bessel function, J0(z), and simultaneously interpolate J1(z) at the zero
locations:

sddszerofind J0.sdds J0.zero -zero=J0 -column=z,J1

(This isn’t the most accurate way to interpolate J1(z), of course.)

• synopsis:

sddszerofind [-pipe=[input][,output]] [inputfile] [outputfile]

-zeroesOf=columnName [-columns=columnNames] [-slopeOutput]

• files: inputFile contains the data to be searched for zeroes. outputFile contains columns for
each of the independent quantities and a column for the dependent quantity. Normally, each
dependent quantity is represented by a single column of the same name. If output of slopes is
requested, additional columns will be present, having names of the form columnNameSlope.

If inputFile contains multiple pages, each is treated separately and is delivered to a separate
page of outputFile.

• switches:

– -pipe[=input][,output] — The standard SDDS Toolkit pipe option.

– -zeroesOf=columnName — Specifies the name of the dependent quantity, for which
zeroes will be found.

– -columns=columnNames — Specifies the names of the independent quantities, for which
zero locations will be interpolated. Generally, there is only one of these. columnNames

is a comma-separated list of optionally wildcarded names.

– -slopeOutput — Specifies that additional columns will be created containing the slopes
of the dependent quantity as a function of each independent quantity. This can be useful,
for example, if one wants to pick out only positive-going zero-crossings.

• see also:

– sddsinterp (4.39)

• author: M. Borland, ANL/APS.

159

4.71 SDDS Editing

This manual page does not describe a program, but rather a facility that is common to several
programs. In particular, several SDDS programs use a common syntax for specifying editing of
string data. The editing commands for these programs are composed of a series of subcommands
of the form [count]commandLetter[commandSpecificData] As indicated, the count and command-

SpecificData are optional.
The commands are as follows:

[n]f — move forward 1 or n characters.

[n]b — move backward 1 or n characters.

[n]d — delete the next character or n characters.

[n]F — move forward 1 or n words.

[n]B — move backward 1 or n words.

[n]D — delete the next word or n words.

a — Go to the beginning of the string.

e — Go to the end of the string.

[n]i-delim-text-delim- — Insert text, delimited by the character -delim- 1 or n times. For
example, “i/thisString/” would insert “thisString” once.

[n]s-delim-text-delim- — Search for text, delimited by the character -delim- 1 or n times. The
position is left at the end of the search string. -delim- may be any character except a question
mark.

S-delim-text-delim- — Search for text, delimited by the character -delim-, leaving the position
at the start of the search string. -delim- may be any nonspace character except a question
mark.

[n]s?-delim-text-delim- — Search for text, delimited by the character -delim- 1 or n times.
Abort all subsequent editing if the search fails. If the search suceeds, leave the position at
the end of the search string. -delim- may be any nonspace character except a question mark.

S?-delim-text-delim- — Search for text, delimited by the character -delim-. Abort all subse-
quent editing if the search fails. If the search suceeds, leave the position at the start of the
search string. -delim- may be any nonspace character except a question mark.

[n]k — Delete forward from the present position 1 or n characters, placing them in the kill
buffer.

[n]K — Delete forward from the present position 1 or n words, placing them in the kill buffer.

zchar — Delete forward from the present position up to the first occurence of the character
char, placing the deleted text in the kill buffer.

[n]Zchar — Delete 1 or n times up to and including the character char, placing the deleted
text in the kill buffer.

160

[n]y — Yank the kill buffer into the string 1 or n times.

[n]%-delim-text1-delim-text2-delim- — Replace text1 with text2 1 or n times starting at the
present position. -delim- may be any nonspace character. For example, “10%/c/C/” would
capitalize the next 10 occurences of the character ’c’.

• see also:

– sddsprocess (4.52)

– sddsplot (4.50)

– sddsconvert (4.20)

161

4.72 rpn Calculator Module

• description:

Many of the SDDS toolkit programs employ a common Reverse Polish Notation (RPN) cal-
culator module for equation evaluation. This module is based on the rpn programmable
calculator program. It is also available in a commandline version called rpnl for use in shell
scripts. This manual page discusses the programs rpn and rpnl, and indicates how the rpn

expression evaluator is used in SDDS tools.

• examples:

Do some floating-point math using shell variables: (Note that the asterisk (for multiplication)
is escaped in order to protect it from interpretation by the shell.)

set pi = 3.141592

set radius = 0.15

set area = ‘rpnl $pi $radius 2 pow *‘

Use rpn to do the same calculation:

rpn> 3.141592 sto pi

rpn> 0.15 sto radius

rpn> radius 2 pow pi *

0.070685820000000

rpn> quit

• synopsis:

rpn [filenames]

rpnl rpnExpression

• Overview of rpn and rpnl:

rpn is a program that places the user in a Reverse Polish Notation calculator shell. Com-
mands to rpn consist of generally of expressions in terms of built-in functions, user-defined
variables, and user-defined functions. Built-in functions include mathematical operations,
logic operations, string operations, and file operations. User-defined functions and variables
may be defined “on the fly” or via files containing rpn commands.

The command rpn filename invokes the rpn shell with filename as a initial command file.
Typically, this file would contain instructions for a computation. Prior to execution of any
files named the commandline, rpn first executes the instructions in the file named by the
environment variable RPN DEFNS, if it is defined. This file can be used to store commonly-
used variable and function definitions in order to customize the rpn shell. This same file is
read by rpnl and all of the SDDS toolkit programs that use the rpn calculator module. An
example of such a file is included with the code.

As with any RPN system, rpn uses stacks. Separate stacks are maintained for numerical,
logical, string data, and command files.

rpnl is essentially equivalent to executing rpn, typing a single command, then exiting. How-
ever, rpnl has the advantage that it evaluates the command and prints the result to the screen

162

without any need for user input. Thus, it can be used to provide floating point arithmetic in
shell scripts. Because of the wide variety of operations supported by the rpn module and the
availability of user-defined functions, this is a very powerful feature even for command shells
that include floating point arithmetic.

Built-in commands may be divided into four broad categories: mathematical operations,
logical operations, string operations, and file operations. (There are also a few specialized
commands such as creating and listing user-defined functions and variables; these will be
addressed in the next section). Any of these commands may be characterized by the number
of items it uses from and places on the various stacks.

– Mathematical operations:

∗ Using rpn variables:
The sto (store) function allows both the creation of rpn variables and modification
of their contents. rpn variables hold double-precision values. The variable name may
be any string starting with an alphabetic character and containing no whitespace.
The name may not be one used for a built-in or user-defined function. There is no
limit to the number of variables that may be defined.
For example, 1 sto one would create a variable called one and store the value 1
in it. To recall the value, one simply uses the variable name. E.g., one could enter
3.1415925 sto pi and later enter pi to retrieve the value of π.

∗ Basic arithmetic: + - * / sum

With the exception of sum, these operations all take two values from the numeric
stack and push one result onto the numeric stack. For example, 5 2 - would push
5 onto the stack, push 2 onto the stack, then push the result (3) onto the stack.
sum is used to sum the top n items on the stack, exclusive of the top of the stack,
which gives the number of items to sum. For example, 2 4 6 8 4 sum would put
the value 20 on the stack.

∗ Basic scientific functions: sin cos acos asin atan atan2 sqrt sqr pow exp

ln

With the exception of atan2 and pow, these operations all take one item from the
numeric stack and push one result onto that stack.
sin and cos are the sine and cosine functions, while asin, acos, and atan are in-
verse trigonometic functins. atan2 is the two-argument inverse tangent: x y atan2

pushes the value atan(y/x) with the result being in the interval [−π, π].
sqrt returns the positive square-root of nonnegative values. sqr returns the square
of a value. pow returns a general power of a number: x y pow pushes xt onto the
stack. Note that if y is nonintegral, then x must be nonnegative.
exp and ln are the base-e exponential and logarithm functions.

∗ Special functions: Jn Yn cei1 cei2 erf erfc gamP gamQ lngam

Jn and Yn are the Bessel functions of integer order of the first and second kind[7].
Both take two items from the stack and place one result on the stack. For example,
x i Jn would push Ji(x) onto the stack. Note that Yn(x) is singular at x=0.
cei1 and cei2 are the 1st and 2nd complete elliptic integrals. The argument is the
modulus k, as seen in the following equations (the functions K and E are those used

163

by Abramowitz[7]).

cei1(k) = K(k2) =

∫ π/2

0

dθ√
1 − k2sin2θ

cei2(k) = E(k2) =

∫ π/2

0

√

1 − k2sin2θdθ

erf and erfc are the error function and complementary error function. By defini-
tion, erf(x) + erfc(x) is unity. However, for large x, x erf 1 - will return 0 while x

erfc will return a small, nonzero value. The error function is defined as[7]:

erf(x) =
2√
π

∫

0
xe−t2dt

Note that erf(x/
√

2) is the area under the normal Gaussian curve between −x and
x.
gamP and gamQ are, respectively, the incomplete gamma function and its complement
[7]:

gamP(a, x) = 1 − gamQ(a, x) =
1

Γ(a)

∫ x

0
e−tta−1dt a > 0

These functions take two arguments; the ’a’ argument is place on the stack first.
lngam is the natural log of the gamma function. For integer arguments, x lngam is
ln((x − 1)!). The gamma function is defined as[7]:

Γ(x) =

∫

∞

0
tx−1e−tdt

∗ Numeric stack operations: cle n= pop rdn rup stlv swap view ==

cle clears the entire stack, while pop simply removes the top element. == dupli-
cates the top item on the stack, while x n= duplicates the top x items of the stack
(excluding the top itself). swap swaps the top two items on the stack. rdn (rotate
down) and rup (rotate down) are stack rotation commands, and are the inverse of
one another. stlv pushes the stack level (i.e., the number of items on the stack)
onto the stack. Finally, view prints the entire stack from top to bottom.

∗ Random number generators: rnd grnd

rnd returns a random number from a uniform distribution on [0, 1]. grnd returns a
random number from a normal Gaussian distribution.

∗ Array operations: mal []

mal is the Memory ALlocation command; it pops a single value from the numeric
stack, and returns a “pointer” to memory sufficient to store the number of double-
precision values specified by that value. This pointer is really just an integer, which
can be stored in a variable like any other number. It is used to place values in and
retrieve values from the allocated memory.
] is the memory store operator. A sequence of the form value index addr] results
in value being stored in the index position of address addr. value, index, and addr

are consumed in this operation. Indices start from 0.
Similarly, index addr [value pushes the value in the index position of address addr

onto the stack. index and addr are consumed in this operation.

164

∗ Miscellaneous: tsci int

tsci allows one to toggle display between scientific and variable-format notation. In
the former, all numbers are displayed in scientific notation, whereas in the later, only
sufficiently large or small numbers are so displayed. (See also the format command
below.)
int returns the integer part of the top value on the stack by truncating the nonin-
teger part.

– Logical operations: ! && < == > ? $ vlog ||

∗ Conditional execution: ? The question-mark operator functions to allow program
branching. It is meant to remind the user of the C operator for conditional evalua-
tion of expressions. A conditional statement has the form
? executeIfTrue : executeIfFalse $

The colon and dollar sign function as delimiters for the conditionally-executed in-
structions. The ? operator pops the first value from the logic stack. It branches to
the first set of instructions if this value is “true”, and to the second if it is “false”.

∗ Comparisons: < == >

These operations compare two values from the numeric stack and push a value onto
the logic stack indicating the result. Note that the values from the numeric stack
are left intact. That is, these operations push the numeric values back onto the
stack after the comparison.

∗ Logic operators: && || !

These operators consume values from the logic stack and push new results onto that
stack. && returns the logical and of the top two values, while || returns the logical
or. ! is the logical negation operator.

∗ Miscellaneous: vlog

This operator allows viewing the logic stack. It lists the values on the stack starting
at the top.

∗ Examples:
Suppose that a quantity is tested for its sign. If the sign is negative, then have the
conditional return a -1, if the sign is positive then return a +1.
Suppose we are running in the rpn shell and that the quantity 4 is initially pushed
onto the stack. The command “0 < ? -1 : 1 $ ” that accomplishes the sign test
will be executed as follows.

command stack logical stack

0 0 stack empty

4

< 0 false <-- new value

4

? 1 : -1 $ 1 stack empty

0

4

In order to keep the stack small, the command could have been written
“0 < pop pop ? -1 : 1 $ ”, where the pop commands would eliminate the 0 and
4 from the stack before the conditional is executed.

165

If the command is executed with rpnl command in a C-shell, then the $ character
has to be escaped with single quotes:

C-shell> rpnl “4 0 < pop pop ? -1 : 1 "’$’

If the command is executed in a C-shell sddsprocess command to create a new col-
umn, then we write:

sddsprocess <infile> <outfile> \

-def=col,NewColumn,"OldColumn 0 < pop pop ? -1 : 1 "’$’

which is similar to the rpnl command above.
If the sddsprocess command is run in a tcl/tk shell, then the $ character is escaped
with a backslash:

sddsprocess <infile> <outfile> \

"-def=col,NewColumn,OldColumn 0 < pop pop ? -1 : 1 \$"

Note that the double quotes enclose the whole command argument, not just the
sub-argument.

– String operations: "" =str cshs format getformat pops scan sprf vstr xstr

∗ Stack operations: "" =str pops vstr

To place a string on the string stack, one simply encloses it in double quotation
marks. =str duplicates the top of the string stack. pops pops the top item off of
the string stack. vstr prints (views) the string stack, starting at the top.

∗ Format operations: format getformat

format consumes the top item of the string stack, and causes it to be used as the
default printf-style format string for printing numbers. getformat pushes onto the
string stack the default printf-style format string for printing numbers.

∗ Print/scan operations: scan sprf

scan consumes the top item of the string stack and scans it for a number; it pushes
the number scanned onto the string stack, pushes the remainder of the string onto
the string stack, and pushes true/false onto the logic stack to indicate success/failure.
sprf consumes the top of the string stack to get a sprintf format string, which it
uses to print the top of the numeric stack; the resulting string is pushed onto the
string stack. The numeric stack is left unchanged.

∗ Other operations: cshs xstr

cshs executes the top string of the stack in a C-shell subprocess; note that if the
command requires terminal input, rpn will hang. xstr executes the top string of
the stack as an rpn command.

– File operations: @ clos fprf gets open puts

∗ Command file input: @
The @ operator consumes the top item of the string stack, pushing it onto the
command file stack. The command file is executed following completion of processing

166

of the current input line. Command file execution may be nested, since the files are
on a stack. The name of the command file may have options appended to it in
the format filename,option. Presently, the only option recognized is ’s’, for silent
execution. If not present, the command file is echoed to the screen as it is executed.
Example: "commands.rpn,s" @ would silently execute the rpn commands in the
file commands.rpn.

∗ Opening and closing files: clos open

open consumes the top of the string stack, and opens a file with the name given in
that element. The string is of the format filename,option, where option is either
’w’ or ’r’ for write or read. open pushes a file number onto the numeric stack. This
should be stored in a variable for use with other file IO commands. The file numbers
0 and 1 are predefined, respectively, as the standard input and standard output.
clos consumes the top of the numeric stack, and uses it as the number of a file to
close.

∗ Input/output commands: fprf gets puts

These commands are like the C routines with similar names. fprf is like fprintf;
it consumes the top of the string stack to get a fprintf format string for printing a
number. It consumes the top of the numeric stack to get the file number, and uses
the next item on the numeric stack as the number to print. This number is left on
the stack.
gets consumes the top of the numeric stack to get a file number from which to read.
It reads a line of input from the given file, and pushes it onto the string stack. The
trailing newline is removed. If successful, gets pushes true onto the logic stack,
otherwise it pushes false.
puts consumes the top of the string stack to get a string to output, and the top of
the numeric stack to get a file number. Unlike the C routine of the same name, a
newline is not generated. Both puts and fprf accept C-style escape sequences for
including newlines and other such characters.

– author: M. Borland, ANL/APS.

167

4.73 SDDS Wildcard Conventions

This manual page does not describe a program, but rather a facility that is common to several
programs. In particular, several SDDS programs use a common convention for wildcards in
element names.

The characters *, ?, [,], and are used for wildcard operations.

* matches any zero or more characters. A sequence like *a matches zero or more characters
up to the first occurence of a.

? matches any one character.

[rangeSpec] matches any one character in rangeSpec. rangeSpec is composed on any number of
explicit characters, plus character ranges specified as firstChar-lastChar, which matches any
character between firstChar and lastChar inclusive in the ASCII character set. For example,
[a-z] would match a lower case alphabetic character, while [a-z][A-Z][0-9] would match
any alphanumeric character.

[rangeSpec] matches any one character not in rangeSpec.

• see also:

– sddschanges (4.12)

– sddsconvert (4.20)

– sddscorrelate (4.22)

– sddsenvelope (4.28)

– sddsfft (4.33)

– sddsoutlier (4.47)

– sddsplot (4.50)

– sddsprintout (4.51)

– sddsprocess (4.52)

– sddssmooth (4.63)

– sddsxref (4.69)

– sddszerofind (4.70)

168

5 Manual Pages for APS-Specific Programs

169

5.1 awe2sdds

• description: Converts a file in awe self-describing format to SDDS. This is of interest to
only a few users at APS, as awe format has been superseeded by SDDS and is rarely used.

• example: To convert awe format Twiss parameter data from an old version of elegant:

awe2sdds APS.awe APS.sdds -labelColumnName=ElementName

• synopsis:

awe2sdds inputFile outputFile [-labelColumnName=string] [-asciiOutput]

• files: inputFile is an awe-format file, the SDDS equivalent of which is written to outputFile.
The “auxiliary values” of the awe file are converted into SDDS parameters. The awe tables
are converted into SDDS tabular data, all columns being double precision except the “row
label”, which becomes a string column.

• switches:

– -labelColumnName=string— Requests that the awe row label be given the name string.
By default, the row label is placed in a column named “row-label”.

– -asciiOutput — Requests that output be in ASCII. By default, the output is binary.

• author: M. Borland, ANL/APS.

170

5.2 col2sdds

• description: Converts a file in column self-describing format to SDDS. This is of interest to
APS users only, some of whom still have programs that generate column-format files.

• synopsis:

col2sdds inputFile outputFile [-fixMplNames]

• files: inputFile is a column-format file, the SDDS equivalent of which is written to outputFile.
The “auxiliary values” of the columns file are converted into SDDS parameters. The column

table is converted into SDDS tabular data, all columns begin double precision except the
“row label”, which becomes a string column.

• switches:

– -fixMplNames — Requests that any column or parameter names in the input file that
contain mpl character set escape sequences be “fixed”. This results in simpler names.
The escape sequences are always retained in definition of the symbol for each column or
parameter, and hence will appear on graphs as expected.

• author: M. Borland, ANL/APS.

171

5.3 sdds2mpl

• description: sdds2mpl extracts data columns or parameters from an SDDS data set and
creates mpl data files. The program allows creation of mpl labels from SDDS parameters.
This tool is primarily of interest to APS users, some of whom still use the older mpl Toolkit.
It may be of interest to others who are interested in a simple format for use with programs
that don’t need the full power of SDDS protocol. Such applications can use sdds2mpl and
mpl2sdds to mediate between themselves and SDDS-compliant programs.

• example:

sdds2mpl APS.twi -rootname=APS -output=column,z,betax -output=column,z,betay

• synopsis:

sdds2mpl [SDDSfile] [-pipe[=input]] [-rootName=string] [-separatePages]

-output={column | parameter},xName,yName[,{syName | sxName,syName}]
[-announceOpenings] [-labelParameters=name[=format]][...]

• files: SDDSfile is the name of an SDDS file from which mpl-format files will be made. Each
mpl file contains two to four columns of data.

• switches:

– -pipe[=input] — The standard SDDS Toolkit pipe option.

– -announceOpenings — Requests that an informational message be printed whenever a
new output file is opened.

– -rootName=string — Gives the rootname for constructing output filenames.

– -separatePages — Requests that tabular-data column output from separate pages in
the SDDS data set go to separate files.

– -labelParameters=name[=format]][...] — Gives the names and optional printf
format specifications for parameters that will be printed on the title line of the mpl files.

– -output{column | parameter},xName,yName[,{syName | sxName,syName}] — Re-
quests that the named columns or parameters be put into a mpl file or set of files.
If -separate is not given or if the data is for parameters, the name of the file is
rootname xName yName.out. For column output, if -separate is given, the names of
the files are rootname N xName yName.out, where N is the page number. This option
may be given any number of times.

• see also:

– Data for Examples (see 3.3)

– mpl2sdds (5.4)

• author: M. Borland, ANL/APS.

172

5.4 mpl2sdds

• description: Adds mpl data files to an SDDS data set. mpl is a simple data format used by
the mpl Toolkit, which is now largely superseded by SDDS and will not be supported in the
future.

• example:

mpl2sdds APS s betax.out APS s betay.out -output=APSbetas.sdds

• synopsis:

mpl2sdds mplFile [mplFile...] -output=SDDSFile [-erase]

• files: Any number of mplFile arguments may be given. These name files in mpl format, which
has between two and four columns of data. sdds2mpl attempts to add all of the columns
from each mpl data file to the data set. However, a column that has the same name as an
existing column will not be used. By default, the data in the mpl files is added to SDDSFile,
if it exists already.

• switches:

– -output=SDDSfile — Specifies that data be added to file SDDSfile. If the file does not
exist, it is created.

– -erase — Specifies that if SDDSFile exists already, it should be erased prior to adding
any data to the data set. By default, the data in SDDSFilename is retained.

• see also:

– sdds2mpl (5.3)

• author: M. Borland, ANL/APS.

Contents

1 Why Use Self-Describing Files? 1

2 Definition of SDDS Protocol 2

2.1 Introduction . 2
2.2 Structure of the SDDS Header . 3

2.2.1 Data Set Description . 4
2.2.2 Tabular-Data Column Definition . 5
2.2.3 Parameter Definition . 6
2.2.4 Array Data Definition . 7
2.2.5 Header File Include Specification . 7
2.2.6 Data Mode and Arrangement Defintion . 8

2.3 Structure of SDDS ASCII Data Pages . 8
2.4 Structure of SDDS Binary Data Pages . 9

173

3 Manual Pages Overview 11

3.1 SDDS Toolkit Programs by Category . 11
3.1.1 Mathematical Operations Tools . 11
3.1.2 Statistics Tools . 12
3.1.3 Digital Signal Processing Tools . 13
3.1.4 Data Fitting Tools . 13
3.1.5 Data Manipulation Tools . 14
3.1.6 Graphics Tools . 15
3.1.7 Miscellaneous Tools . 15
3.1.8 File Protocol Conversion Tools . 16
3.1.9 Text-based Data-review Tools . 16

3.2 Toolkit Program Usage Conventions . 17
3.3 Data for Examples . 18

3.3.1 Twiss Parameters . 18
3.3.2 Data Logging Over Time . 19

4 Manual Pages 21

4.1 csv2sdds . 22
4.2 elegant2genesis . 24
4.3 hdf2sdds . 25
4.4 plaindata2sdds . 26
4.5 sdds2math . 27
4.6 sdds2plaindata . 29
4.7 sdds2spreadsheet . 30
4.8 sdds2stream . 31
4.9 sddsbaseline . 33
4.10 sddsbreak . 35
4.11 sddscast . 37
4.12 sddschanges . 38
4.13 sddscheck . 40
4.14 sddscliptails . 41
4.15 sddscollapse . 42
4.16 sddscollect . 43
4.17 sddscombine . 45
4.18 sddscongen . 47
4.19 sddscontour . 48
4.20 sddsconvert . 51
4.21 sddsconvolve . 53
4.22 sddscorrelate . 54
4.23 sddsderiv . 56
4.24 sddsderef . 58
4.25 sddsdigfilter . 59
4.26 sddsdistest . 62
4.27 sddsendian . 63
4.28 sddsenvelope . 64
4.29 sddseventhist . 66
4.30 sddsexpand . 68
4.31 sddsexpfit . 69

174

4.32 sddsfdfilter . 71
4.33 sddsfft . 73
4.34 sddsgenericfit . 75
4.35 sddsgfit . 77
4.36 sddshist . 79
4.37 sddshist2d . 81
4.38 sddsinteg . 83
4.39 sddsinterp . 84
4.40 sddsmakedataset . 86
4.41 sddsmpfit . 88
4.42 sddsmultihist . 90
4.43 sddsmatrixmult . 92
4.44 sddsmatrixop . 93
4.45 sddsnaff . 95
4.46 sddsnormalize . 97
4.47 sddsoutlier . 98
4.48 sddspeakfind . 100
4.49 sddspfit . 102
4.50 sddsplot . 105
4.51 sddsprintout . 122
4.52 sddsprocess . 124
4.53 sddspseudoinverse . 131
4.54 sddsquery . 133
4.55 sddsregroup . 135
4.56 sddsrowstats . 136
4.57 sddsrunstats . 138
4.58 sddssampledist . 140
4.59 sddsselect . 142
4.60 sddssequence . 144
4.61 sddsshiftcor . 146
4.62 sddsslopes . 148
4.63 sddssmooth . 150
4.64 sddssort . 152
4.65 sddssplit . 153
4.66 sddstimeconvert . 154
4.67 sddstranspose . 155
4.68 sddsvslopes . 156
4.69 sddsxref . 157
4.70 sddszerofind . 159
4.71 SDDS Editing . 160
4.72 rpn Calculator Module . 162
4.73 SDDS Wildcard Conventions . 168

5 Manual Pages for APS-Specific Programs 169

5.1 awe2sdds . 170
5.2 col2sdds . 171
5.3 sdds2mpl . 172
5.4 mpl2sdds . 173

175

